Jump to content

File:Critical Orbit 0;3,2,1000,1....png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikibooks, open books for an open world

Original file (800 × 800 pixels, file size: 24 KB, MIME type: image/png)

Summary

Description
English: Critical Orbit, Inner and outer circle of Julia set for fc(z)=z*z+c where rotation number has continued fraction expansion [0;3,2,1000,1...]
Date
Source

own work with help and inspiration of many great people. See code nad ref

 
This plot was created with Gnuplot by n.
Author Adam majewski

See also

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Maxima CAS source code

/* 
Computes and draw :
- period 7 indifferent orbit z: z=f^n(z)
- critical orbit
- center , inner and outer circle of critical orbit

for complex quadratic polynomial : f(z)=z*z+c

batch script for Maxima CAS
Adam Majewski 20090604- 20111124 fraktal.republika.pl

Maxima CAS  ver 5.25.1  
Lisp:SBCL 1.0.29.11
G N U P L O T Version 4.2 patchlevel 6 
Linux 2.6.32-35-generic
*/

kill(all)$

/* basic funtion  = monic and centered complex quadratic polynomial 
http://en.wikipedia.org/wiki/Complex_quadratic_polynomial
*/
f(z,c):= z*z+c $

/* iterated function */
fn(n, z, c) :=
    if n=1 	then f(z,c)
        	else f(fn(n-1, z, c),c) $

/* roots of Fn are periodic point of  fn function */
Fn(n,z,c):=fn(n, z, c)-z $

/* gives irreducible divisors of polynomial Fn[p,z,c] 
which roots are periodic points of period p */

G[p,z,c]:=
block(
 [f:divisors(p),t:1],
 g,
 f:delete(p,f),
 if p=1 
	then return(Fn(p,z,c)),
 for i in f do t:t*G[i,z,c],
 g: Fn(p,z,c)/t,  
 return(ratsimp(g))
  )$
  
/* use :
load(cpoly); 
roots:GiveRoots_bf(G[3,z,c]);
this is 1-st function without fpprec
so it gives bad roots for period 8
*/

GiveRoots_bf(g):=
block(
 [cc:bfallroots(expand(g)=0)],
 cc:map(rhs,cc),/* remove string "c=" */
 return(cc)
  )$ 

GiveRoots_P_bf(p,c):=
block(
 [g,
 cc:[]],
 fpprintprec:10, /* number of digits to display */
 if p<7 then fpprec:16
 elseif p=7 then fpprec:40
 elseif p=8 then fpprec:70
 elseif p=9 then fpprec:150
 elseif p=10 then fpprec:300,
 g:G[p,z,'c], /* here should be c as a symbol not a value */
 cc:bfallroots(expand(ev(g))=0), /* ev puts value instead of c symbol */
 cc:map(rhs,cc),/* remove string "c=" */
 return(cc)
)$   

GiveCriticalOrbit(c,iMax):=
   /* 
   computes (without escape test)
   critical orbit (forward orbit of critical point )
   and saves it to the list */
block(
 [z,orbit],
 z:0, /* first point = critical point z:0+0*%i */
 orbit:[z], 
 for i:1 thru iMax step 1 do
        ( z:expand(f(z,c)),
          orbit:endcons(z,orbit),
          disp(i)), /* progress info */
 return(orbit) 
)$


/* find fixed point alfa */
GiveFixed(c):= float(rectform((1-sqrt(1-4*c))/2))$

/* distance between point z and fixed point zf */
GiveDistanceFromCenterTo(z):= abs(z-zf)$

/* 
inner radius of Siegel Disc = radius of inner circle  
inner circle with center at fixed point 
is the biggest circle inside Siegel Disc
criticla orbit is a boundary of SD
*/
GiveInnerRadiusOf(orbit):=lmin(map(GiveDistanceFromCenterTo,orbit))$

/* outer radius of Siegel Disc =  radius of outer circle  
outer circle with center at fixed point
is minimal circle containing SD
*/
GiveOuterRadiusOf(orbit):=lmax(map(GiveDistanceFromCenterTo,orbit))$



/* -------------- main ----------------- */

load(cpoly)$ 
compile(all)$ /* compile all functions for speed */

a:[]$  /* list for periodic points  */
p:7$  /* period of z-cycle */

/* Nr of points of critical orbit to draw 
  To big last to long
   to small gives not good image */
NrPoints:400000; 
 
define(m(z),diff(fn(p,z,c),z,1))$ /* multiplier */ 

c:0.113891513213121  +0.595978335936124*%i $ /* put a value to a symbol here */
 
/* find periodic points  */
roots[p]:GiveRoots_P_bf(p,c)$ /* ev puts value instead of c symbol */

/* find and display only indifferent */
for z in roots[p] do 
 (
  stability:cabs(float(m(z))),
  if (stability < 1.0001) and (stability> 0.0009) then /* for indifferent */
  (a:cons(z,a), 
   disp(concat( "z=",string(float(z)),";     abs(multiplier(z))=",string(stability) ) ))
);

zf:GiveFixed(c); /* fixed point = center of Siegel disc */
zfx:realpart(zf)$
zfy:imagpart(zf)$

orbit:GiveCriticalOrbit(c,NrPoints)$
innerRadius: GiveInnerRadiusOf(orbit) ;
ir2 : innerRadius * innerRadius $

outerRadius: GiveOuterRadiusOf(orbit) ;
or2 : outerRadius * outerRadius $

/* --------------------------- draw ---------------------------------*/
load(draw); /*  draw package Mario Rodriguez Riotorto 
riotorto.users.sourceforge.net/gnuplot/ */
draw2d(
        title= concat("Critical orbit for fc(z)=z*z + ", string(c)),
        user_preamble = "set size ratio 1; set key outside right; set key box ", /*  */
        file_name = "cro_321d",
        terminal  = png,
        yrange = [-0.1,1.1],
        xrange = [-0.7,0.5],
        dimensions  = [800,800],
        xlabel     = "Z.re ",
        ylabel     = "Z.im",
        point_type    = filled_circle,
        points_joined = false,
        ip_grid = [400,400], /* Number of initial grid points in implicit plots */

        key = "center ",
        color             =blue,
        point_size    = 0.9,
        points([[realpart(zf),imagpart(zf)]]),

        key = "inner circle",
        point_size    = 0.3,
        color = black,
        implicit( (x-zfx)^2+(y-zfy)^2 = ir2 , x,-2,2,y,-2,2),

        key = "outer circle",
        color = green,
        implicit( (x-zfx)^2+(y-zfy)^2 = or2 , x,-2,2,y,-2,2),

        key = "crital point ",
        color = red ,
        point_size    = 1.2,
        points([[0,0]]),

        key = "crital value ",
        color = black ,
        point_size    = 1.2,
        points([[realpart(c),imagpart(c)]]),
        
        key = "period 7 orbit",
        color = magenta,
        point_size    = 1.2,
        points(map(realpart,a),map(imagpart,a)),

        key = "critical orbit",
        color = red,
        point_size    = 0.3,
        points(map(realpart,orbit),map(imagpart,orbit))

 );

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

21 November 2011

image/png

65564b10e62362f042261ff5dbc0c0e805916da8

24,580 byte

800 pixel

800 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:24, 25 November 2011Thumbnail for version as of 21:24, 25 November 2011800 × 800 (24 KB)Soul windsurfercritical value over critical orbit
21:08, 25 November 2011Thumbnail for version as of 21:08, 25 November 2011800 × 800 (24 KB)Soul windsurferadded period 7 orbit and critical value
16:07, 21 November 2011Thumbnail for version as of 16:07, 21 November 2011800 × 800 (23 KB)Soul windsurfer