File:Fatou componenets 3.png
Page contents not supported in other languages.
Tools
General
Sister projects
In other projects
Appearance
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 1,000 × 1,000 pixels.
Original file (1,000 × 1,000 pixels, file size: 17 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. The description on its description page there is shown below. |
Contents
Summary
DescriptionFatou componenets 3.png |
English: Filled Julia set with marked components ( shades of gray) for fc(z)=z*z + c where C=-0.12565651+0.65720*i. This image is inspired by this image by T Kawahira Polski: Wypełniony zbiór Julii z zaznaczonymi składowymi ( odcienie szarości) dla fc(z)=z*z + c gdzie C=-0.12565651+0.65720*i; Obraz jest zaispirowany przez obraz T Kawahira |
Date | |
Source | Own work |
Author | Adam majewski |
Summary
- period = 3
- c = -0.1256565100000000 ; 0.6572000000000000
- periodic point zp = -0.1509373627736352 ; 0.2638003803965269
- m = 0.9201569575722166 ; -0.0069986816652415
- Internal Angle = 0.9987894964068370 = 0.1428571428571428 so periodic point is attracting and parameter c is inside period 3 component
- internal radius = 0.9201835730513828 so point c is slightly rotated from internal ray for angle 0=1. One can see it on the image: how componets are twisted around fixed points and it's preimages.
See c program for computing multiplier map
Algorithm
- create array for 8-bit colors ( shades of gray = numbers from 0 to 255)
- fill array with data ( dynamical plane of fc(z) = z*z + c with filled Julia set )
- apply Sobel filter ( result is in another array)
- merge two arrays
- save result array to pgm file
- convert pgm file to png
Computing filled Julia set and its components
- map array ( integer coordinate ) to dynamical plane ( z-plane) : (iX,iY) --> (Zx,Zy)
- find attractor ( forward iteration of critical point )
- for each point Z compute its External Last Iteration ( Escape Time).
- if ( IterationMax != eLastIteration ) then mark it as exterir of filled julia set , else it is interior
- for interior points find internal last iteration for which it is close to attractor and color this point proportionally to it
Compare with
Above image is inspired by this image by T Kawahira
-
components, period = 4 ; C=0.281+0.533*i
-
c=-0,123+0.745i
-
c=-0.12256116687665 +0.74486176661974*i; (center of period 3 component) and external rays
-
C=-0.12256 +0.74486*i; eLCM/J
-
c=-0.11+0.65569999*i ; MIIM
-
c=-0.11+0.65569999*i; mIIM/J
-
z^2 - 0.110 + 0.6557i
-
c = −0,123 + 0.745i; Quaternion julia set. The "Douady Rabbit" julia set is visible in the cross section
-
Douady rabbit in an exponential family
C src code
It is c console program. To compile:
gcc -Wall c.c -lm
To run :
./a.out
It will create ct0.pgm file. To convert it to pgm with Image Magic use :
convert ct0.pgm c.png
Code has been formatted in Emacs
/*
c console program
-----------------------------------------
1.ppm file code is based on the code of Claudio Rocchini
http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
create 24 bit color graphic file , portable pixmap file = PPM
see http://en.wikipedia.org/wiki/Portable_pixmap
to see the file use external application ( graphic viewer)
I think that creating graphic can't be simpler
---------------------------
2. first it creates data array which is used to store color values of pixels,
fills tha array with data and after that writes the data from array to pgm file.
It allows free ( non sequential) acces to "pixels"
-------------------------------------------
Adam Majewski fraktal.republika.pl
Sobel filter
Gh = sum of six values ( 3 values of matrix are equal to 0 ). Each value is = pixel_color * filter_coefficients
*/
#include <stdio.h>
#include <math.h>
#include <complex.h>
/* escape time to infinity */
int GiveExtLastIteration(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _ER2)
{
int i;
double Zx, Zy;
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
Zx=_Zx0; /* initial value of orbit */
Zy=_Zy0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (i=0;i<iMax && ((Zx2+Zy2)<_ER2);i++)
{
Zy=2*Zx*Zy + C_y;
Zx=Zx2-Zy2 +C_x;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
};
return i;
}
double complex GiveAttractor(double _Cx, double _Cy, double ER2, int _IterationMax)
{
int Iteration;
double Zx, Zy; /* z = zx+zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
/* -- find attractor ZA using forward iteration of critical point Z = 0 */
Zx=0.0;
Zy=0.0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (Iteration=0;Iteration<_IterationMax && ((Zx2+Zy2)<ER2);Iteration++)
{
Zy=2*Zx*Zy + _Cy;
Zx=Zx2-Zy2 + _Cx;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
};
return Zx+Zy*I;
}
/* attracting time to finite attractor ZA */
int GiveIntLastIteration(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _AR2, double _ZAx, double _ZAy )
{
int i;
double Zx, Zy; /* z = zx+zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
double d, dX, dY; /* distance from z to Alpha */
Zx=_Zx0; /* initial value of orbit */
Zy=_Zy0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
dX=Zx-_ZAx;
dY=Zy-_ZAy;
d=dX*dX+dY*dY;
for (i=0;i<iMax && (d>_AR2);i++)
{
Zy=2*Zx*Zy + C_y;
Zx=Zx2-Zy2 +C_x;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
dX=Zx-_ZAx;
dY=Zy-_ZAy;
d=dX*dX+dY*dY;
};
return i;
}
int main(){
const double Cx=-0.12565651,
Cy=0.65720;
unsigned char period=3; /* period of finite attractor */
const int iXmax = 1000;
const int iYmax = 1000;
int iX,iY,
iWidth = iXmax + 1,
iHeight= iYmax + 1;
/* world ( double) coordinate = parameter plane*/
const double ZxMin=-1.4;
const double ZxMax=1.4;
const double ZyMin=-1.4;
const double ZyMax=1.4;
double Zx, Zy; /* Z=Zx+Zy*i */
double complex ZA; /* atractor ZA = ZAx + ZAy*i */
/* */
double PixelWidth=(ZxMax-ZxMin)/iWidth;
double PixelHeight=(ZyMax-ZyMin)/iHeight;
const double EscapeRadius=80.0; /* radius of circle around origin; its complement is a target set for escaping points */
double ER2=EscapeRadius*EscapeRadius;
const double AR = PixelWidth/10; /* radius of circle around attractor ZA = target set for attracting points */
double AR2 = AR* AR;
const int IterationMax=60,
IterationMaxBig= 1000001;
int eLastIteration, iLastIteration;
unsigned char G, Gh, Gv; /* sobel filter */
unsigned char data[iYmax][iXmax]; /* 2D array for colors ( shades of gray ) */
unsigned char edge[iYmax][iXmax]; /* 2D array for colors ( shades of gray ) */
unsigned char color[]={255,230,180};
const int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
FILE * fp;
char *filename ="ct02.pgm";
char *comment="# this is binary pgm file";/* comment should start with # */
ZA = GiveAttractor( Cx, Cy, ER2, IterationMaxBig); /* find attractor ZA using forward iteration of critical point Z = 0 */
/* fill the data array */
for(iY=0;iY<iYmax;++iY){
Zy=ZyMax - iY*PixelHeight; /* reverse Y axis */
if (fabs(Zy)<PixelHeight/2) Zy=0.0; /* */
for(iX=0;iX<iXmax;++iX){
Zx=ZxMin + iX*PixelWidth;
eLastIteration = GiveExtLastIteration(Zx, Zy, Cx, Cy, IterationMax, ER2 );
if ( IterationMax != eLastIteration )
{data[iY][iX]=245;} /* exterior */
else /* interior */
{ iLastIteration = GiveIntLastIteration(Zx, Zy, Cx, Cy, IterationMaxBig, AR2, creal(ZA), cimag(ZA));
data[iY][iX]=color[iLastIteration % period];} /* 255 - 30*(iLastIteration % period);}*/
/* if (Zx>0 && Zy>0) data[iY][iX]=255-data[iY][iX]; check the orientation of Z-plane by marking first quadrant */
}
}
/* find boundaries - Sobel filter
for points not the borders of data array
*/
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX){
Gv= data[iY+1][iX-1] + 2*data[iY+1][iX] + data[iY+1][iX-1] - data[iY-1][iX-1] - 2*data[iY][iX-1] - data[iY-1][iX+1];
Gh= data[iY+1][iX+1] + 2*data[iY][iX+1] + data[iY-1][iX-1] - data[iY-1][iX+1] - 2*data[iY][iX-1] - data[iY-1][iX-1];
G = sqrt(Gh*Gh + Gv*Gv);
if (G==0) {edge[iY][iX]=255;} /* background */
else {edge[iY][iX]=0;} /* boundary */
}
}
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX){ if (edge[iY][iX]==0) data[iY][iX]=0;}}
/* write the whole data array to ppm file in one step */
fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode */
fprintf(fp,"P5\n %s\n %d\n %d\n %d\n",comment,iXmax,iYmax,MaxColorComponentValue); /*write header to the file*/
fwrite(data,sizeof data,1,fp); /*write image data bytes to the file*/
fclose(fp);
printf("OK - file %s saved\n", filename);
return 0;
}
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Items portrayed in this file
depicts
some value
13 July 2011
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 15:45, 13 July 2011 | 1,000 × 1,000 (17 KB) | Soul windsurfer |
File usage
The following 4 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on ja.wikipedia.org
Retrieved from "https://en.wikibooks.org/wiki/File:Fatou_componenets_3.png"