File:Julia set for f(z) = z*z -0.6978381951224250+0.2793041341013660 ( components and attracting cycle).png
Page contents not supported in other languages.
Tools
General
Sister projects
In other projects
Appearance
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,000 × 2,000 pixels.
Original file (2,000 × 2,000 pixels, file size: 447 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. The description on its description page there is shown below. |
Summary
DescriptionJulia set for f(z) = z*z -0.6978381951224250+0.2793041341013660 ( components and attracting cycle).png |
English: Numerical approximation of the Julia set for f(z) = z*z -0.6978381951224250+0.2793041341013660 ( Fatou/Julia set components and superattracting cycle = critical orbit here. Both basins ( interior and exterior) are superattracting. Parameter c is a center of hyperbolic satellite ( without cusp) components for int angle 5/11, so interior of Julia set is superattractive. Basin of attraction to infinity ( exterior) is superattracing for all polynomials.) |
Date | |
Source | Own work |
Author | Soul windsurfer |
Other versions |
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
c src code
/*
here are:
* 1 critical point z=0.0
* 1 weakly attracting cycle period 4
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOf -> DrawPointOf -> ComputeColorOf ( FunctionTypeT FunctionType , complex double z) -> ComputeColor
check only last function which computes color of one pixel for given Function Type
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc j.c -lm -Wall -march=native -fopenmp
time ./a.out > j.txt
gcc j.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >i.txt
time ./a.out >e.txt
make
convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
#include <limits.h> // Maximum value for an unsigned long long int
// https://sourceforge.net/p/predef/wiki/Standards/
#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
#define VERSION 20230217
int NumberOfImages = 0;
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int iHeight = 8000; //
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
// The size of array has to be a positive constant integer
static unsigned long long int iSize; // = iWidth*iHeight;
// memmory 1D array for 8 bit color
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;
//unsigned char *edge2;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
//FunctionType = representing functions
typedef enum {FatouBasins = 0, FatouComponents = 2, LSM = 3, LSM_m = 4, Unknown = 5 , BDM = 6, MBD = 7 , MBD2 = 8, SAC = 9, DLD = 10, ND = 11, NP= 12, POT = 13 , Blend = 14, DEM = 15 } FunctionTypeT;
typedef enum {superattracting = 100, attracting = 200, parabolic = 300, repelling = 400 } DynamicTypeT;
DynamicTypeT DynamicType; // it is set manually
// see ComputeColor_FunctionType_DynamicType belwo
// see SetPlane
double radius = 1.2;
complex double center = 0.0 ;
double DisplayAspectRatio = 1.0; // https://en.wikipedia.org/wiki/Aspect_ratio_(image)
// dx = dy compare setup : iWidth = iHeight;
double ZxMin; //= -1.3; //-0.05;
double ZxMax;// = 1.3; //0.75;
double ZyMin;// = -1.3; //-0.1;
double ZyMax;// = 1.3; //0.7;
double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
double PixelWidth2;
// dem
double BoundaryWidth ; //= 1.0*iWidth/2000.0 ; // measured in pixels ( when iWidth = 2000)
double distanceMax ; //= BoundaryWidth*PixelWidth;
double ratio;
// traps for the orbit (forward iteration )
double ER;
double ER2; //= 1e60;
double AR; // bigger values do not works
double AR2;
complex double parabolic_trap_center;
int IterMax = 10000000;
int IterMax_LSM = 10000000;
int IterMax_DEM = 10000000;
/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfBasin1 = 170;
unsigned char iColorOfInterior = 150;
unsigned char iColorOfExterior = 225;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 5;
// pixel counters; pixel counters work not good with OpenMP !!!
unsigned long long int uUnknown = 0;
unsigned long long int uInterior = 0;
unsigned long long int uExterior = 0;
const int period = 1;
const int period_parent = 1;
const int period_child = 11;
const int t_numerator = 5;
const int t_denominator = 11;
/* critical point */
complex double zcr = 0.0; //
complex double c = -0.697838195122425 +0.279304134101366*I; //center; -0.690059870015044 +0.276026482784614 *I; // = root
// 1 superattracting cycle period 1
double delta; // delta is a distance between fixed points
/*
alfa < 1/2 <beta
cabs(beta - alfa) = delta
alfa = ( 1 - delta)/2
beta = ( 1 + delta)/2
delta = sqrt(1- 4c)
*/
complex double zp = 0.0; // one of periodic points , alfa
complex double zcr_last; //
// for BDM
static double TwoPi=2.0*M_PI; // texture
double t0 ; // manually tuned t for MBD
// see https://www.youtube.com/watch?v=JttLtB0Gkdk&t=894s
//
// update with f function
const char *f_description = "Numerical approximation of Julia set for f(z)= z^2 + c "; // without /n !!!
/* ------------------------------------------ functions -------------------------------------------------------------*/
/*
*/
// complex function
// upadte f_description also
complex double f(const complex double z0) {
double complex z = z0;
z = z*z + c;
return z;
}
double c_arg(complex double z)
{
double arg;
arg = carg(z);
if (arg<0.0) arg+= TwoPi ;
return arg;
}
double c_turn(complex double z)
{
double arg;
arg = c_arg(z);
return arg/TwoPi;
}
int is_z_outside(complex double z){
if (creal(z) >ZxMax ||
creal(z) <ZxMin ||
cimag(z) >ZyMax ||
cimag(z) <ZyMin)
{return 1; } // is outside = true
return 0; // is inside = false
}
complex double GiveFixed(complex double c){
/*
Equation defining fixed points : z^2-z+c = 0
z*2+c = z
z^2-z+c = 0
coefficients of standard form ax^2+ bx + c
a = 1 , b = -1 , c = c
The discriminant d is
d=b^2- 4ac
d = 1 - 4c
alfa = (1-sqrt(d))/2
*/
complex double d = 1-4*c;
complex double z = (1-csqrt(d))/2.0;
return z;
}
// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx (int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double GiveZy (int iy)
{
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double GiveZ (int ix, int iy)
{
double Zx = GiveZx (ix);
double Zy = GiveZy (iy);
return Zx + Zy * I;
}
//------------------complex numbers -----------------------------------------------------
double cabs2(complex double z){
return creal(z)*creal(z)+cimag(z)*cimag(z);
}
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
/*
it is different for parabolic case !!!
is it possible to adjust AR so that level curves in interior have figure 8?
https://en.wikipedia.org/wiki/Saddle_point
find such AR for internal LCM/J and LSM that level curves croses critical point and it's preimages
for attracting ( also weakly attracting = parabolic) dynamics
it may fail
* if one iteration is bigger then smallest distance between periodic point zp and Julia set
* if critical point is attracted by another cycye ( then change periodic point zp)
Made with help of Claude Heiland-Allen
attracting radius of circle around finite attractor
there are 2 basins so
It would have to be done separately in each basin.
A suggested method:
For each critical point, forward iterate to find an attractor and then thin out the critical point set to only one per basin by removing all but one that converge to a common attractor, for each attractor.
For each pixel, calculate a smoothed iteration value (e.g. using the methods in my GVC coloring ucl) and note which basin it is in.
For each critical point in the reduced set, calculate a smoothed iteration value using the same method as in step 2.
For each pixel, subtract from its smoothed iteration value the one found in step 3 for the critical point that shares its basin. Note that the critical point itself, if inside the image rectangle and in a pixel center, will end up with zero and some points may end up with negative values.
The level set boundaries you want will now be the boundaries where the sign or the integer part of the modified smoothed iteration value changes. In particular, the -0.something to +0.something transition will pass through the critical point, the n.something to (n+1).something transitions for nonnegative n will pass through its images, and the same for negative n will pass through its preimages.
pauldebrot
https://fractalforums.org/programming/11/crtical-points-and-level-curves/4323/msg29514#new
-----------------------------------
related procedures : using AR
MarkTrap
IsInsideTrap
ComputeColorOfFatouBasins
ComputeColorOfFatouComponents
*/
double GiveTunedAR(const double iter_Max, const complex double zp){
fprintf(stdout, " compute tuned AR = \n");
complex double z = zcr; // initial point z0 = criical point
double iter;
double r ;//= 10 * PixelWidth; // initial value
double rMin = 30 * PixelWidth;
// double t;
// iterate critical point
for (iter=0; iter< iter_Max; ++iter ){
r = cabs(zp - z); // check distance between zp = f^p(zcr) and periodic point zp
if ( r<rMin) {break;}
z = f(z); // forward iteration
}
//parabolic_trap_center = (zp + z)/2.0; // for parabolic case only
//parabolic_trap_center = (creal(z) + creal(zp))/2.0 + I*(cimag(zp) + cimag(z))/2.0; // midpoint between zf and z
return r; // use it as a AR
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
// not for parabolic case
int IsInsideTrap(int ix, int iy){
complex double z = GiveZ(ix, iy);
if ( cabs2(z - zp) < AR2 )
{return 1;}
return 0;
}
int TrapIsGood(){
complex double z = zp+AR;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
if ( cabs2(z) > ER2 )
{
//fprintf(stderr, "trap is bad\n");
return 0; // trap is bad because point is escaping ; A true statement is one that evaluates to a nonzero number. A false statement evaluates to zero.
}
z = f(z); // iteration: z(n+1) = f(zn)
}
return 1; // trap is good , point is not escaping
}
/*
************************************************** ComputeColor_FunctionType_DynamicType *********************************************
Make ComputeColor_FunctionType_DynamicType function for each combination of 2 enums
* FunctionTypeT
* DynamicTypeT
then update Compute8BitColor procedure :
case FunctionType + DynamicType: {ComputeColor_FunctionType_DynamicType(z); break;}
run procedure inside MakeImages using DrawImage (array, FunctionType);
second enum DynamicType is updated manually inside main function
********************************************************************************************************************************************
*/
// ********************************************************************************************************************
/* ---------------------FatouBasins -----------------------------------------------------------*/
// ********************************************************************************************************************
/*
2 basins
- exterior = superattracting
- interior = superattracting
- unknown ( possibly empty set )
pixel counters not work with OpenMP !!!
*/
unsigned char ComputeColor_FatouBasins_superattracting (complex double z)
{
double cabs2z ;
int i; // number of iteration
for (i = 0; i < IterMax; ++i)
{
cabs2z = cabs2(z);
// infinity is superattracting here !!!!!
if ( cabs2z > ER2 ){ return iColorOfExterior;}
// superattracting basins
if ( cabs2z < AR2 ){ uInterior += 1;return iColorOfInterior;}
z = f(z); // iteration: z(n+1) = f(zn)
}
uUnknown += 1;
return iColorOfUnknown;
}
/*
2 basins
- exterior = superattracting
- interior = attracting but not superattracting
- unknown ( possibly empty set )
pixel counters not work with OpenMP !!!
*/
unsigned char ComputeColor_FatouBasins_attracting (complex double z)
{
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
// infinity is superattracting here !!!!!
if ( cabs2(z) > ER2 ){ uExterior +=1; return iColorOfExterior;}
// 1 Attraction basins
if ( cabs2(zp-z) < AR2 ){ uInterior += 1; return iColorOfInterior;}
z = f(z); // iteration: z(n+1) = f(zn)
}
uUnknown += 1;
return iColorOfUnknown;
}
/*
2 basins
- exterior = superattracting
- interior = parabolic
- unknown ( possibly empty set )
pixel counters not work with OpenMP !!!
*/
unsigned char ComputeColor_FatouBasins_parabolic (complex double z)
{
int i; // number of iteration
for (i = 0; i < IterMax; ++i)
{
// infinity is superattracting here !!!!!
if ( cabs2(z) > ER2 ){ uExterior +=1; return iColorOfExterior;}
// 1 parabolic basins
if ( cabs2(zp-z) < AR2 ){ uInterior += 1;return iColorOfInterior;}
z = f(z); // iteration: z(n+1) = f(zn)
}
uUnknown += 1;
return iColorOfUnknown;
}
/*
1 basin
- exterior = superattracting
- interior do not exist
- unknown ( possibly empty set )
pixel counters not work with OpenMP !!!
*/
unsigned char ComputeColor_FatouBasins_repelling (complex double z)
{
int i; // number of iteration
for (i = 0; i < IterMax; ++i)
{
// infinity is superattracting here !!!!!
if ( cabs2(z) > ER2 ){ uExterior +=1; return iColorOfExterior;}
z = f(z); // iteration: z(n+1) = f(zn)
}
uUnknown += 1;
return iColorOfUnknown;
}
// ********************************************************************************************************************
/* ---------------------FatouComponents -----------------------------------------------------------*/
// ********************************************************************************************************************
unsigned char ComputeColor_FatouComponents_superattracting (complex double z)
{
double cabs2z ;
int i; // number of iteration
for (i = 0; i < IterMax; ++i)
{
cabs2z = cabs2(z);
// infinity is superattracting here !!!!!
if ( cabs2z > ER2 ){ return iColorOfExterior;}
//1 Attraction basins
if ( cabs2z < AR2 ){ return iColorOfBasin1 - (i % period_child)*20;}
z = f(z); // iteration: z(n+1) = f(zn)
}
return iColorOfUnknown;
}
// ********************************************************************************************************************
/* ---------------------Level Set Method = LSM -----------------------------------------------------------*/
// ********************************************************************************************************************
/*
2 basins
exterior is basin of infinity
interior is superattracting
julia set is connected
*/
unsigned char ComputeColor_LSM_superattracting(complex double z)
{
//double cabsz2;
//double distance;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
double cabs2z = cabs2(z);
// infinity is superattracting here ,
// if ( cabs2z > ER2 ) { return (13*i) % 255;} // exterior
// if ( cabs2z < AR2 ) { return 255- ((7*i) % 255);} // interior
if ( cabs2z > ER2 || ( cabs2z < AR2 ))
{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
z = f(z);
}
return iColorOfUnknown;
}
/*
2 basins
exterior is basin of infinity
interior is attracting
julia set is connected
*/
unsigned char ComputeColor_LSM_attracting(complex double z)
{
//double cabsz2;
//double distance;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
//double cabs2z = cabs2(z);
// infinity is superattracting here , only one basin
if ( cabs2(z) > ER2 ) { return (13*i) % 255;} //
if ( cabs2(zp - z) < AR2 ) { return 255- ((7*i) % 255);} //
z = f(z);
}
return iColorOfUnknown;
}
/*
no interior = julia set is disconnected = only one basin here
*/
unsigned char ComputeColor_LSM_repelling(complex double z)
{
//double cabsz2;
//double distance;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
//cabsz = cabs(z);
// infinity is superattracting here , only one basin
if ( cabs2(z) > ER2 )
{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
z = f(z);
}
return iColorOfUnknown;
}
/*
z_n < center < z_p
here AR = (z_p - z_n)/2
It is parabolic case: compute AR and change trap center in the local setup procedure
*/
unsigned char ComputeColor_LSM_parabolic(complex double z)
{
//double cabsz;
//double distance;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
//cabsz = cabs(z);
// infinity is superattracting here !!!!!
if ( cabs2(z) > ER2 )
{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
//distance = cabs(z - zp);
if (cabs2(parabolic_trap_center - z) < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
{ return (10*i) % 255;} // cabs2(zp-z) = cabs2(z) because zp = zcr = 0
z = f(z);
}
return iColorOfUnknown;
}
// ********************************************************************************************************************
/* ---------------------Binary Decomposition Method = BDM -----------------------------------------------------------*/
// ********************************************************************************************************************
// Modified BD for interior, BDM for exterior
unsigned char ComputeColor_BDM_superattracting (complex double z)
{
double cabs2z;
double turn;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0
// if z is inside target set ( orbit trap) = exterior of circle with radius ER
if ( cabs2z > ER2 ) // exterior
{
if (cimag(z) > 0) // binary decomposition of target set
{ return 0;}
else {return 255; }
}
//
if ( cabs2z < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
{
turn = c_turn(z);
if (turn > t0 && turn < 0.5 + t0) // modified ( + t0) binary decomposition of target set
{ return 0;}
else {return 255; }
}
z = f(z);
}
return iColorOfUnknown;
}
unsigned char ComputeColor_BDM_attracting (complex double z)
{
//double cabs2z;
//double distance2;
double turn;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
//cabs2z = ; // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0
// if z is inside target set ( orbit trap) = exterior of circle with radius ER
if ( cabs2(z) > ER2 ) // exterior
{
if (cimag(z) > 0) // binary decomposition of target set
{ return 0;}
else {return 255; }
}
if ( cabs2(zp - z) < AR2 ) // exterior
{
turn = c_turn(z);
if (turn > t0 && turn < 0.5 + t0) // modified ( + t0) binary decomposition of target set
{ return 0;}
else {return 255; }
}
z = f(z);
}
return iColorOfUnknown;
}
/*
no interior = julia set is disconnected = only one basin here
*/
unsigned char ComputeColor_BDM_repelling (complex double z)
{
double cabs2z;
//double distance2;
//double turn;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0
// if z is inside target set ( orbit trap) = exterior of circle with radius ER
if ( cabs2z > ER2 ) // exterior
{
if (cimag(z) > 0) // binary decomposition of target set
{ return 0;}
else {return 255; }
}
z = f(z);
}
return iColorOfUnknown;
}
unsigned char ComputeColor_BDM_parabolic (complex double z)
{
double cabs2z;
double distance2;
double turn;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0
// if z is inside target set ( orbit trap) = exterior of circle with radius ER
if ( cabs2z > ER2 ) // exterior
{
if (cimag(z) > 0) // binary decomposition of target set
{ return 0;}
else {return 255; }
}
distance2 = cabs2(z - parabolic_trap_center);
if ( distance2 < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
{
turn = c_turn(z);
if (turn > t0 && turn < 0.5 + t0) // modified ( + t0) binary decomposition of target set
{ return 0;}
else {return 255; }
}
z = f(z);
}
return iColorOfUnknown;
}
// Modified BD
unsigned char ComputeColorOfMBD (complex double z)
{
double cabs2z;
double distance;
double turn;
int i; // number of iteration
for (i = 0; i < IterMax_LSM; ++i)
{
cabs2z = cabs2(z); // numerical speed up : cabs2(zp-z) = cabs2(z) because zp = zcr = 0
// if z is inside target set ( orbit trap) = exterior of circle with radius ER
if ( cabs2z > ER2 ) // exterior
{
if (cimag(z) > 0) // binary decomposition of target set
{ return 0;}
else {return 255; }
}
distance = cabs(z - zp);
if ( distance < AR2 ) // if z is inside target set ( orbit trap) = interior of cirlce with radius AR
{
turn = c_turn(z = zp);
if (turn < 0.5 && turn> 0 ) // modified binary decomposition of target set
{ return 0;}
else {return 255; }
}
z = f(z);
}
return iColorOfUnknown;
}
/*
==================================================================================================
============================= Draw functions ===============================================================
=====================================================================================================
typedef enum {FatouBasins = 0, FatouComponents = 2, LSM = 3, LSM_m = 4, Unknown = 5 , BDM = 6, MBD = 7 , MBD2 = 8, SAC = 9, DLD = 10, ND = 11, NP= 12, POT = 13 , Blend = 14, DEM = 15} FunctionTypeT;
typedef enum {superattracting = 100, attracting = 200, parabolic = 300, repelling = 400} DynamicTypeT;
*/
unsigned char Compute8BitColor(FunctionTypeT FunctionType, complex double z){
unsigned char iColor;
switch(DynamicType+FunctionType){
// case FunctionType + DynamicType: {ComputeColor_FunctionType_DynamicType(z); break;}
// FatouBasins
case FatouBasins + superattracting: {iColor = ComputeColor_FatouBasins_superattracting(z); break;}
case FatouBasins + attracting: {iColor = ComputeColor_FatouBasins_attracting(z); break;}
case FatouBasins + parabolic: {iColor = ComputeColor_FatouBasins_parabolic(z); break;}
case FatouBasins + repelling: {iColor = ComputeColor_FatouBasins_repelling(z); break;}
// FatouComponents
case FatouComponents + superattracting: {iColor = ComputeColor_FatouComponents_superattracting(z); break;}
//case FatouComponents + parabolic: {iColor = ComputeColor_FatouComponents(z); break;}
// LSM
case LSM + superattracting: {iColor = ComputeColor_LSM_superattracting(z); break;}
case LSM + attracting: {iColor = ComputeColor_LSM_attracting(z); break;}
case LSM + parabolic: {iColor = ComputeColor_LSM_parabolic(z); break;}
case LSM + repelling: {iColor = ComputeColor_LSM_repelling(z); break;}
// BDM
case BDM + superattracting: {iColor = ComputeColor_BDM_superattracting(z); break;}
case BDM + attracting: {iColor = ComputeColor_BDM_attracting(z); break;}
case BDM + parabolic: {iColor = ComputeColor_BDM_parabolic(z); break;}
case BDM + repelling: {iColor = ComputeColor_BDM_repelling(z); break;}
// case DEM : {iColor = ComputeColorOfDEMJ(z); break;}
//case Unknown : {iColor = ComputeColorOfUnknown(z); break;}
//case BD : {iColor = ComputeColorOfBD(z); break;}
//case MBD : {iColor = ComputeColorOfMBD(z); break;}
//case MBD2 : {iColor = ComputeColorOfMBD2(z); break;}
//case SAC : {iColor = ComputeColorOfSAC(z); break;}
//case DLD : {iColor = ComputeColorOfDLD(z); break;}
//case ND : {iColor = ComputeColorOfND(z); break;}
//case NP : {iColor = ComputeColorOfNP(z); break;}
//case POT : {iColor = ComputeColorOfPOT(z); break;}
//case Blend : {iColor = ComputeColorOfBlend(z); break;}
default: break;
}
return iColor;
}
// plots raster point (ix,iy)
int DrawPoint ( unsigned char A[], FunctionTypeT FunctionType, int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
if(i<0 && i> iMax)
{ return 1;}
z = GiveZ(ix,iy);
iColor = Compute8BitColor(FunctionType, z);
A[i] = iColor ; //
return 0;
}
int DrawImage ( unsigned char A[], FunctionTypeT FunctionType)
{
unsigned int ix, iy; // pixel coordinate
fprintf (stderr, "compute image %d \t c = %.16f%+.16f*i \n", FunctionType, creal(c), cimag(c));
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior, uExterior)
for (iy = iyMin; iy <= iyMax; ++iy)
{
fprintf (stderr, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPoint(A, FunctionType, ix, iy); //
}
fprintf (stderr, "\n"); //info
return 0;
}
int PlotPoint(const complex double z, unsigned char A[]){
unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
unsigned int i = Give_i(ix,iy); /* index of _data array */
if(i>-1 && i< iMax)
{A[i]= 0; // 255-A[i];
}
return 0;
}
int IsInsideCircle (int x, int y, int xcenter, int ycenter, int r){
double dx = x- xcenter;
double dy = y - ycenter;
double d = sqrt(dx*dx+dy*dy);
if (d<r) { return 1;}
return 0;
}
// Big point = disk
int PlotBigPoint(const complex double z, double p_size, unsigned char A[]){
unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
unsigned int i;
if ( is_z_outside(z))
{fprintf (stdout,"PlotBigPoint : z= %.16f %+.16f*I is outside\n", creal(z), cimag(z)); return 1;} // do not plot
/* mark seed point by big pixel */
int iSide =p_size*iWidth/2000.0 ; /* half of width or height of big pixel */
int iY;
int iX;
for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){
for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){
if (IsInsideCircle(iX, iY, ix_seed, iy_seed, iSide)) {
i= Give_i(iX,iY); /* index of _data array */
//if(i>-1 && i< iMax)
if ( A[i] >120 && A[i] < 150)
{ A[i] = 0;}
else {A[i]= 255-A[i];}
}
// else {printf(" bad point \n");}
}}
return 0;
}
int PlotAllPoints(const complex double zz[], int kMax, double p_size,unsigned char A[]){
int k;
printf("kMax = %d \n",kMax);
for (k = 0; k < kMax; ++k)
{
//fprintf(stderr, "z = %+f %+f \n", creal(zz[k]),cimag(zz[k]));
PlotBigPoint(zz[k], p_size, A);}
return 0;
}
int DrawForwardOrbit(const complex double z0, const unsigned long long int i_Max, double p_size, unsigned char A[]){
unsigned long long int i; /* nr of point of critical orbit */
complex double z = z0;
fprintf(stdout, "draw forward orbit \n");
fprintf(stderr, "draw forward orbit \n");
PlotBigPoint(z, p_size, A);
/* forward orbit of critical point */
for (i=1;i<i_Max ; ++i)
{
z = f(z);
//if (cabs2(z - zp) < AR2) {break;} //
if (cabs2(z - zp) < PixelWidth2)
{ fprintf (stdout,"last point of the orbit z= %.16f %+.16f*I \n After i = %llu iterations forward orbit of critical point reaches trap: circle with radius = PixelWidth around fixed point \n", creal(z), cimag(z), i );
break;} //
PlotBigPoint(z, p_size , A);
}
zcr_last = z;
fprintf (stdout,"first point of the orbit z0= %.16f %+.16f*I \n", creal(z0), cimag(z0));
// printf (stdout,"last point of the orbit z= %.16f %+.16f*I \n After i = %llu iterations forward orbit of critical point reaches trap: circle with radius = AR around fixed point \n", creal(z), cimag(z), i );
fprintf (stdout,"last point of the orbit z= %.16f %+.16f*I after i = %llu iterations. \n", creal(z), cimag(z), i);
fprintf (stdout,"distance between last point of the orbit and fixed point = %.16f = %.16f * ImageWidth = %.1f * PixelWidth = \n ", cabs(z - zp), cabs(z-zp)/(ZxMax - ZxMin), cabs(z - zp)/PixelWidth);
fprintf (stdout,"\n \n ");
return 0;
}
// ***********************************************************************************************
// ********************** draw line segment ***************************************
// ***************************************************************************************************
// plots raster point (ix,iy)
int iDrawPoint(unsigned int ix, unsigned int iy, unsigned char iColor, unsigned char A[])
{
/* i = Give_i(ix,iy) compute index of 1D array from indices of 2D array */
if (ix >=ixMin && ix<=ixMax && iy >=iyMin && iy<=iyMax )
{A[Give_i(ix,iy)] = iColor;}
else {fprintf (stdout,"iDrawPoint : (%d; %d) is outside\n", ix,iy); }
return 0;
}
/*
http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm
Instead of swaps in the initialisation use error calculation for both directions x and y simultaneously:
*/
void iDrawLine( int x0, int y0, int x1, int y1, unsigned char iColor, unsigned char A[])
{
int x=x0; int y=y0;
int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1;
int err = (dx>dy ? dx : -dy)/2, e2;
for(;;){
iDrawPoint(x, y, iColor, A);
if (x==x1 && y==y1) break;
e2 = err;
if (e2 >-dx) { err -= dy; x += sx; }
if (e2 < dy) { err += dx; y += sy; }
}
}
int dDrawLineSegment(double complex Z0, double complex Z1, int color, unsigned char *array)
{
double Zx0 = creal(Z0);
double Zy0 = cimag(Z0);
double Zx1 = creal(Z1);
double Zy1 = cimag(Z1);
unsigned int ix0, iy0; // screen coordinate = indices of virtual 2D array
unsigned int ix1, iy1; // screen coordinate = indices of virtual 2D array
// first step of clipping
//if ( Zx0 < ZxMax && Zx0 > ZxMin && Zy0 > ZyMin && Zy0 <ZyMax
// && Zx1 < ZxMax && Zx1 > ZxMin && Zy1 > ZyMin && Zy1 <ZyMax )
ix0= (Zx0- ZxMin)/PixelWidth;
iy0 = (ZyMax - Zy0)/PixelHeight; // inverse Y axis
ix1= (Zx1- ZxMin)/PixelWidth;
iy1= (ZyMax - Zy1)/PixelHeight; // inverse Y axis
// second step of clipping
if (ix0 >=ixMin && ix0<=ixMax && ix0 >=ixMin && ix0<=ixMax && iy0 >=iyMin && iy0<=iyMax && iy1 >=iyMin && iy1<=iyMax )
iDrawLine(ix0,iy0,ix1,iy1,color, array) ;
return 0;
}
/*
int DrawAttractors(const complex double zpa[], int kMax, double p_size, unsigned char A[]){
unsigned char color = 0;
// join points by lin to create closed curve
dDrawLineSegment(zp3[0], zp3[1],color,A);
dDrawLineSegment(zp3[1], zp3[2],color,A);
dDrawLineSegment(zp3[2], zp3[0],color,A);
//
PlotAllPoints(zpa, period, p_size,A);
return 0;
}
*/
int MarkTrap(unsigned char A[]){
unsigned int ix, iy; // pixel coordinate
unsigned int i;
fprintf (stderr, "Mark trap \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy)
{
fprintf (stderr, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix){
if (IsInsideTrap(ix, iy)) {
i= Give_i(ix,iy); /* index of _data array */
A[i]= 255-A[i]; // inverse color
}}}
return 0;
}
// ***********************************************************************************************
// ********************** mark immediate basin of attracting cycle***************************************
// ***************************************************************************************************
int FillContour(complex double seed, unsigned char color, unsigned char _data[])
{
/*
fills contour with black border ( color = iColorOfBoundary) using seed point inside contour
and horizontal lines
it starts from seed point, saves max right( iXmaxLocal) and max left ( iXminLocal) interior points of horizontal line,
in new line ( iY+1 or iY-1) it computes new interior point : iXmidLocal=iXminLocal + (iXmaxLocal-iXminLocal)/2;
result is stored in _data array : 1D array of 1-bit colors ( shades of gray)
it does not check if index of _data array is good so memory error is possible
it need array with components boundaries mrked by iColorOfBoundary
*/
double dXseed = creal(seed);
double dYseed = cimag(seed);
// from
int iXseed = (int)((dXseed - ZxMin)/PixelWidth);
int iYseed = (int)((ZyMax - dYseed )/PixelHeight); // reversed Y axis
int iX; /* seed integer coordinate */
int iY = iYseed;
/* most interior point of line iY */
int iXmidLocal=iXseed;
/* min and max of interior points of horizontal line iY */
int iXminLocal;
int iXmaxLocal;
int i ; /* index of _data array */;
//fprintf (stderr, "FillContour seed = %.16f %+.16f = %d %+d\n",creal(seed), cimag(seed), iXseed,iYseed);
/* --------- move up --------------- */
do{
iX=iXmidLocal;
i =Give_i(iX,iY); /* index of _data array */;
/* move to right */
while (_data[i] != iColorOfBoundary)
{ _data[i]=color;
iX+=1;
i=Give_i(iX,iY);
}
iXmaxLocal=iX-1;
/* move to left */
iX=iXmidLocal-1;
i=Give_i(iX,iY);
while (_data[i] != iColorOfBoundary)
{ _data[i]=color;
iX-=1;
i=Give_i(iX,iY);
}
iXminLocal=iX+1;
iY+=1; /* move up */
iXmidLocal=iXminLocal + (iXmaxLocal-iXminLocal)/2; /* new iX inside contour */
i=Give_i(iXmidLocal,iY); /* index of _data array */;
if ( _data[i] == iColorOfBoundary) break; /* it should not cross the border */
} while (iY<iyMax);
/* ------ move down ----------------- */
iXmidLocal=iXseed;
iY=iYseed-1;
do{
iX=iXmidLocal;
i =Give_i(iX,iY); /* index of _data array */;
/* move to right */
while (_data[i] != iColorOfBoundary) /* */
{ _data[i]=color;
iX+=1;
i=Give_i(iX,iY);
}
iXmaxLocal=iX-1;
/* move to left */
iX=iXmidLocal-1;
i=Give_i(iX,iY);
while (_data[i] != iColorOfBoundary) /* */
{ _data[i]=color;
iX-=1; /* move to right */
i=Give_i(iX,iY);
}
iXminLocal=iX+1;
iY-=1; /* move down */
iXmidLocal=iXminLocal + (iXmaxLocal-iXminLocal)/2; /* new iX inside contour */
i=Give_i(iXmidLocal,iY); /* index of _data array */;
if ( _data[i]== iColorOfBoundary) break; /* it should not cross the border */
} while (0<iY);
//fprintf (stderr, "FillContour done \n");
return 0;
}
// fill countours of componnets of immediate basin of attraction
// with color
// needs zpp and period global var
// it needs componnets boundaris in A array !!!!
int MarkImmediateBasin( unsigned char A[]){
fprintf (stderr, "mark immediate basin of attracting cycle \n");
//printf(" \n");
unsigned char iColor = 100;
//for (int i=0;i<period ; ++i){
FillContour(zp, iColor , A);
//}
return 0;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfBasin1, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfBasin1);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// FillAllArrayWithColor
//memset (data, 255, sizeof (unsigned char ) * iSize);
// *******************************************************************************************
// ********************************** save grey A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile (unsigned char A[], complex double c, char * n, char *comment)
{
FILE *fp;
const unsigned int MaxColorComponentValue = 255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name[100]; /* name of file */
snprintf (name, sizeof name, "%s_%.16f%+.16f",n, creal(c),cimag(c)); /* radius and iHeght are global variables */
char *filename = strcat (name, ".pgm");
char long_comment[200]; // to long comment can cause: "*** stack smashing detected ***: terminated"
sprintf (long_comment, "%s %s", f_description , comment); // f_description is global var
// save image array to the pgm file
fp = fopen (filename, "wb"); // create new file,give it a name and open it in binary mode
fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
size_t rSize = fwrite (A, sizeof(A[0]), iSize, fp); // write whole array with image data bytes to the file in one step
fclose (fp);
// info
if ( rSize == iSize)
{
printf ("File %s saved ", filename);
if (long_comment == NULL || strlen (long_comment) == 0)
printf ("\n");
else { printf (". Comment = %s \n", long_comment); }
}
else {printf("wrote %zu elements out of %llu requested\n", rSize, iSize);}
NumberOfImages +=1; // count images using global variable
return 0;
}
int PrintCInfo ()
{
printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is displayed in the console : export OMP_DISPLAY_ENV="TRUE"
printf ("__STDC__ = %d\n", __STDC__);
printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
printf ("c dialect = ");
switch (__STDC_VERSION__)
{ // the format YYYYMM
case 199409L:
printf ("C94\n");
break;
case 199901L:
printf ("C99\n");
break;
case 201112L:
printf ("C11\n");
break;
case 201710L:
printf ("C18\n");
break;
//default : /* Optional */
}
return 0;
}
int
PrintProgramInfo ()
{
// display info messages
fprintf (stdout, "%s \n", f_description );
fprintf (stdout, "c = %.16f %+.16f*i \n", creal (c), cimag (c));
double ImageWidth = (ZxMax - ZxMin);
fprintf (stdout, "DynamicType value is setup manually; One can do it also numerically ( from multiplier of fixed point alfa or from some other properities)\n");
switch ( DynamicType){
case repelling:
fprintf (stdout, "\tThere is only one Fatou basin: basin of infinity \n");
fprintf (stdout, "\tthere is no interior = Julia set is disconnected \n");
fprintf (stdout, "\tcritical point z=0 is repelling = attracted to infinity \n");
break;
case attracting:
fprintf (stdout, "\tbasin type is attracting \n");
fprintf (stdout, "\tzcr_last = %.16f \talfa fixed point zp = %.16f\n", creal (zcr_last), creal(zp));//
fprintf (stdout, "\tdelta = %.16f is the distance between fixed points\n", delta);//
fprintf (stdout, "\tAtracting Radius AR is set manually = %.16f = %f * PixelWidth = %f * ImageWidth \n", AR, AR / PixelWidth, AR /ImageWidth );
break;
case superattracting:
fprintf (stdout, "\tbasin type is superattracting \n");
fprintf (stdout, "\tzcr = %.16f = zp = %.16f\n", creal (zcr), creal(zp));//
fprintf (stdout, "\tAtracting Radius AR is set manually = %.16f = %f *PixelWidth = %f *ImageWidth \n", AR, AR / PixelWidth, AR /ImageWidth);
break;
case parabolic:
fprintf (stdout, "\tbasin type is parabolic \n");
fprintf (stdout, "\tzcr_last = %.16f < parabolic_trap_center = %.16f < zp = %.16f\n", creal (zcr_last), creal (parabolic_trap_center), creal(zp));//
fprintf (stdout, "\tzp - zcr_last = %.16f AR*2 = %.16f \t difference = %.16f\n", creal (zp - zcr_last), AR *2.0, creal (zp - zcr_last) - AR *2.0);//
fprintf (stdout, "\tAtracting Radius AR is tuned = (zp - zcr_last)/2 = %.16f = %f *PixelWidth = %f *ImageWidth \n", AR, AR / PixelWidth, AR /ImageWidth);
fprintf (stdout, "\tparabolic_trap_center z = %.16f %+.16f*i \n", creal (parabolic_trap_center), cimag (parabolic_trap_center));// parabolic_trap_center
break;
default:
}
fprintf (stdout, "Image Width = %f in world coordinate\n", ImageWidth);
fprintf (stdout, "PixelWidth = %.16f \n", PixelWidth);
fprintf (stdout, "plane description \n");
fprintf (stdout, "\tcenter z = %.16f %+.16f*i and radius = %.16f \n", creal (center), cimag (center), radius);
// center and radius
// center and zoom
// GradientRepetition
fprintf (stdout, "Maximal number of iterations = iterMax = %d \n", IterMax);
fprintf (stdout, "Maximal number of iterations = iterMax_LSM = %d \n", IterMax_LSM);
fprintf (stdout, "ratio of image = %f ; it should be 1.000 ...\n", ratio);
fprintf (stdout, "\tEscaping Radius = ER = %.16f = %f *PixelWidth = %f * ImageWidth \n", ER, ER / PixelWidth, ER /ImageWidth);
fprintf(stdout, " periodic point ");
//for (int i=0;i<period ; ++i){
fprintf(stdout, "z = %.16f %+.16f*i \n", creal (zp), cimag (zp));
//}
fprintf (stdout, "Unknown pixels = %llu = %.16f * iSize \n", uUnknown, ((double) uUnknown)/iSize );
fprintf (stdout, "Exterior pixels = %llu = %.16f * iSize \n", uExterior, ((double) uExterior)/iSize );
fprintf (stdout, "Interior pixels = %llu = %.16f * iSize \n", uInterior, ((double) uInterior)/iSize );
//printf("Number of images = %d \n", NumberOfImages);
return 0;
}
int SetPlane(complex double center, double radius, double a_ratio){
ZxMin = creal(center) - radius*a_ratio;
ZxMax = creal(center) + radius*a_ratio; //0.75;
ZyMin = cimag(center) - radius; // inv
ZyMax = cimag(center) + radius; //0.7;
return 0;
}
// Check Orientation of z-plane image : mark first quadrant of complex plane
// it should be in the upper right position
// uses global var : ...
int CheckZPlaneOrientation(unsigned char A[] )
{
double Zx, Zy; // Z= Zx+ZY*i;
unsigned i; /* index of 1D array */
unsigned int ix, iy; // pixel coordinate
fprintf(stderr, "compute image CheckOrientation\n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy, i, Zx, Zy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
//fprintf (stderr, " %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix){
// from screen to world coordinate
Zy = GiveZy(iy);
Zx = GiveZx(ix);
i = Give_i(ix, iy); /* compute index of 1D array from indices of 2D array */
if (Zx>0 && Zy>0) A[i]=255-A[i]; // check the orientation of Z-plane by marking first quadrant */
}
}
return 0;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int local_setup(){
switch ( DynamicType){
case repelling: // no interior = no attracting fixed point = only escaping points
break;
case attracting:
if (period_child == 1){
delta = csqrt(1.0 - 4.0*c); // delta is a distance between alfa and beta fixed points
AR = (delta /3.5) * iWidth / 2000;
}
else{ AR = 30.0*PixelWidth*iWidth/2000.0;}
break;
case superattracting: // cabs(zp - zcr_last ) < PixelWidth
AR = 1.0 * PixelWidth * iWidth / 2000 ; //
break;
case parabolic:
// zcr_last < parabolic_trap_center < zp
//int i; /* nr of point of critical orbit */
//complex double z = zcr;
//for (i=1;i<IterMax ; ++i)
// { z = f(z); }
//zcr_last = z;
//
AR = 90.0*PixelWidth*iWidth/2000.0;
parabolic_trap_center = zp; // ( creal(zp) + creal(zcr_last))/ 2.0;
break;
default:
}
AR2 = AR*AR;
return 0;
}
int general_setup()
{
fprintf (stderr, "setup start\n");
zp = GiveFixed(c);
center = 0.0; //zp;
radius = 1.5; //0.24;
/* 2D array ranges */
iWidth = iHeight* DisplayAspectRatio ;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
SetPlane( center, radius, DisplayAspectRatio );
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight); // it should be 1.000 ...
PixelWidth2 = PixelWidth*PixelWidth;
// LSM
// escape radius ( of circle around infinity ) for BDM = 200;
ER = 200.0; // it can be 2.0: but then there is no level curves near Julia set; but the small detailes will be visible
ER2 = ER*ER;
// for BDM MBD
t0 = 5.0/11.0; //1.0 / period; // Is it iternal angle from internal adress ??? = period_parent/period_child (double)
// DEM
// BoundaryWidth = 0.5*iWidth/2000.0 ; // measured in pixels ( when iWidth = 2000)
//distanceMax = BoundaryWidth*PixelWidth;
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
edge2 = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL || edge2 == NULL )
{
fprintf (stderr, " Could not allocate memory");
return 1;
}
fprintf (stderr, " end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end(void)
{
fprintf (stderr, " allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
fprintf(stderr, "warning: to long comment in SaveArray2PGMFile can cause: *** stack smashing detected ***: terminated\n");
free (data);
free(edge);
free(edge2);
PrintCInfo ();
return 0;
}
int MakeImages( ){
// warning: to long comment in SaveArray2PGMFile can cause: "*** stack smashing detected ***: terminated"
DrawImage (data, FatouBasins);
SaveArray2PGMFile (data, c, "FatouBasins" , "FatouBasins ");
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, c, "FatouBasins_LCM" , "FatouBasins_LCM ");
CopyBoundaries(edge, data);
SaveArray2PGMFile (data, c, "FatouBasins_LSCM" , "FatouBasins_LSCM");
//MarkTrap(data);
//SaveArray2PGMFile (data, c, "FatouBasins_trap" , "FatouBasins trap");
DrawImage (data, FatouComponents);
//SaveArray2PGMFile (data, c, "FatouComponents" , "FatouComponents ");
ComputeBoundaries(data,edge);
//SaveArray2PGMFile (edge, c, "FatouComponents_LCM" , "FatouComponents_LCM ");
CopyBoundaries(edge, data);
//SaveArray2PGMFile (data, c, "FatouComponents_LSCM" , "FatouComponents_LSCM");
DrawForwardOrbit(zcr, period_child, 5, data);
SaveArray2PGMFile (data, c, "FatouComponents_LSCM_attr" , "components LSM + LCM and attractor");
MarkTraps(data);
SaveArray2PGMFile (data, "FatouComponents_LSCM_trap" , "FatouComponents_LSCM_trap");
/*
// DrawAttractors(zp3, period, 10, data);
//SaveArray2PGMFile (data, "FatouComponents_LSCM_zp" , "FatouComponents_LSCM_zp");_
DrawImage (data, FatouBasins);
ComputeBoundaries(data,edge);
MarkImmediateBasin(edge);
SaveArray2PGMFile (edge, "FatouBasins_LCM_immediate" , "FatouBasins_LCM_immediate");
//DrawAttractors(zp3, period, 10, edge);
//SaveArray2PGMFile (edge, "FatouBasins_LCM_immediate_zp" , "FatouBasins_LCM_immediate_zp");
*/
DrawImage (data, LSM);
SaveArray2PGMFile (data, c, "LSET" , " Level sets of integer escape time of ET ");
ComputeBoundaries(data,edge2);
SaveArray2PGMFile (edge2, c, "LCET" , "boundaries of integer Escape Time = Level Curve ( LC) of integer Escape Time");
CopyBoundaries(edge2, data);
SaveArray2PGMFile (data, c, "LSLCET" , " Level sets and it's baundaries ( Level Curves = LC) of integer escape time of ET ");
DrawImage (data, BDM);
SaveArray2PGMFile (data, c, "BDM" , "BDM = Binary Decomposition Method for both exterior and interior ( if exist) = Level Sets of Binary Decomposition = ");
ComputeBoundaries(data,edge);
SaveArray2PGMFile (edge, c, "LCBD", "boundaries of Binary Decomposition Method (LC of BD) = LCBD");
CopyBoundaries( edge2, data);
SaveArray2PGMFile (data, c, "LCET_BDM" , "level curves of integer Escape Tima and Binary Decomposition Method for both exterior and interior ( if exist) ");
CopyBoundaries(edge2, edge);
SaveArray2PGMFile (edge, c, "LCBDET ", "boundaries of Binary Decomposition Method and Level sets of Integer Escape Time");
//MarkTrap(edge2);
//SaveArray2PGMFile (edge2, c, "LSM_CRO_trap" , "LSM, critical orbit and trap");
//CopyBoundaries(edge2, data);
//SaveArray2PGMFile (data, "LSCM" , "LSCM");
/*
CopyBoundaries(edge, data);
SaveArray2PGMFile (data, "MBD_LSCM" , "MBD_LSCM");
CopyBoundaries(edge2, edge);
SaveArray2PGMFile (edge, "MBD_LSM_LCM" , "MBD_LSM_LCM ");
CopyBoundaries(edge, data);
SaveArray2PGMFile (data, "MBD_LSM_LSCM" , "MBD_LSM_LSCM");
DrawImage (data, FL);
SaveArray2PGMFile (data, "FL" , "FL");
*/
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main(void)
{
//int i;
//int i_max = 10;
//double cx_min = 0.0;
//double cx_max = 0.250001;
//double dcx = (cx_max - cx_min)/ i_max;
DynamicType = superattracting; // setup DynamicType value manually ; Once can do it also numerically ( from multiplier or from some properities)
general_setup();
//for (i = 0; i < i_max; ++i){
local_setup();
MakeImages();
PrintProgramInfo();
// cx -= dcx;
// }
end();
return 0;
}
bash source code
#!/bin/bash
# script file for BASH
# which bash
# save this file as j.sh
# chmod +x j.sh
# ./j.sh
# checked in https://www.shellcheck.net/
printf "make pgm files \n"
gcc j.c -lm -Wall -march=native -fopenmp
if [ $? -ne 0 ]
then
echo ERROR: compilation failed !!!!!!
exit 1
fi
export OMP_DISPLAY_ENV="TRUE"
printf "display OMP info \n"
printf "run the compiled program\n"
time ./a.out > j.txt
export OMP_DISPLAY_ENV="FALSE"
printf "change Image Magic settings\n"
export MAGICK_WIDTH_LIMIT=100MP
export MAGICK_HEIGHT_LIMIT=100MP
printf "convert all pgm files to png using Image Magic v 6 convert \n"
# for all pgm files in this directory
for file in *.pgm ; do
# b is name of file without extension
b=$(basename "$file" .pgm)
# convert using ImageMagic
# convert "${b}".pgm -resize 2000x2000 "${b}".png
convert "${b}".pgm -resize 25% "${b}".png # fastest , but is related with input size
#convert "${b}".pgm "${b}".png
echo "$file"
done
printf "delete all pgm files \n"
rm ./*.pgm
echo OK
printf "info about software \n"
bash --version
make -v
gcc --version
convert -version
convert -list resource
# end
make
all:
chmod +x d.sh
./d.sh
Tu run the program simply
make
text output
draw forward orbit first point of the orbit z0= 0.0000000000000000 +0.0000000000000000*I last point of the orbit z= -0.8513212263669123 +0.1640415658924206*I after i = 11 iterations. distance between last point of the orbit and fixed point = 0.3681223936471487 = 0.1227074645490496 * ImageWidth = 981.5 * PixelWidth = File FatouComponents_LSCM_attr_-0.6978381951224250+0.2793041341013660.pgm saved . Comment = Numerical approximation of Julia set for f(z)= z^2 + c components LSM + LCM and attractor Numerical approximation of Julia set for f(z)= z^2 + c c = -0.6978381951224250 +0.2793041341013660*i DynamicType value is setup manually; One can do it also numerically ( from multiplier of fixed point alfa or from some other properities) basin type is superattracting zcr = 0.0000000000000000 = zp = -0.4838627473686745 Atracting Radius AR is set manually = 0.0015001875234404 = 4.000000 *PixelWidth = 0.000500 *ImageWidth Image Width = 3.000000 in world coordinate PixelWidth = 0.0003750468808601 plane description center z = 0.0000000000000000 +0.0000000000000000*i and radius = 1.5000000000000000 Maximal number of iterations = iterMax = 10000000 Maximal number of iterations = iterMax_LSM = 10000000 ratio of image = 1.000000 ; it should be 1.000 ... Escaping Radius = ER = 200.0000000000000000 = 533266.666667 *PixelWidth = 66.666667 * ImageWidth periodic point z = -0.4838627473686745 +0.1419426311486844*i Unknown pixels = 0 = 0.0000000000000000 * iSize Exterior pixels = 0 = 0.0000000000000000 * iSize Interior pixels = 0 = 0.0000000000000000 * iSize gcc version: 11.3.0 __STDC__ = 1 __STDC_VERSION__ = 201710 c dialect = C18
chmod +x j.sh ./j.sh make pgm files display OMP info run the compiled program OPENMP DISPLAY ENVIRONMENT BEGIN _OPENMP = '201511' OMP_DYNAMIC = 'FALSE' OMP_NESTED = 'FALSE' OMP_NUM_THREADS = '8' OMP_SCHEDULE = 'DYNAMIC' OMP_PROC_BIND = 'FALSE' OMP_PLACES = '' OMP_STACKSIZE = '0' OMP_WAIT_POLICY = 'PASSIVE' OMP_THREAD_LIMIT = '4294967295' OMP_MAX_ACTIVE_LEVELS = '1' OMP_NUM_TEAMS = '0' OMP_TEAMS_THREAD_LIMIT = '0' OMP_CANCELLATION = 'FALSE' OMP_DEFAULT_DEVICE = '0' OMP_MAX_TASK_PRIORITY = '0' OMP_DISPLAY_AFFINITY = 'FALSE' OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A' OMP_ALLOCATOR = 'omp_default_mem_alloc' OMP_TARGET_OFFLOAD = 'DEFAULT' OPENMP DISPLAY ENVIRONMENT END setup start end of setup compute image 2 c = -0.6978381951224250+0.2793041341013660*i 7999 from 7999 draw forward orbit allways free memory (deallocate ) to avoid memory leaks warning: to long comment in SaveArray2PGMFile can cause: *** stack smashing detected ***: terminated real 0m5.468s user 0m41.000s sys 0m0.152s change Image Magic settings convert all pgm files to png using Image Magic v 6 convert FatouComponents_LSCM_attr_-0.6978381951224250+0.2793041341013660.pgm delete all pgm files OK info about software GNU bash, version 5.1.16(1)-release (x86_64-pc-linux-gnu) Copyright (C) 2020 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software; you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. GNU Make 4.3 Built for x86_64-pc-linux-gnu Copyright (C) 1988-2020 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Copyright (C) 2021 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Version: ImageMagick 6.9.11-60 Q16 x86_64 2021-01-25 https://imagemagick.org Copyright: (C) 1999-2021 ImageMagick Studio LLC License: https://imagemagick.org/script/license.php Features: Cipher DPC Modules OpenMP(4.5) Delegates (built-in): bzlib djvu fftw fontconfig freetype heic jbig jng jp2 jpeg lcms lqr ltdl lzma openexr pangocairo png tiff webp wmf x xml zlib Resource limits: Width: 1MP Height: 1MP List length: unlimited Area: 128MP Memory: 256MiB Map: 512MiB Disk: 10GiB File: 768 Thread: 8 Throttle: 0 Time: unlimited
references
some value
14 March 2023
image/png
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:58, 14 March 2023 | 2,000 × 2,000 (447 KB) | Soul windsurfer | Uploaded own work with UploadWizard |
File usage
The following 2 pages use this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
PNG file comment |
|
---|---|
File change date and time | 13:46, 14 March 2023 |