Jump to content

Accelerator Physics/Units

From Wikibooks, open books for an open world

Units

[edit | edit source]

Most of the time, accelerator physics uses SI units for its properties. The most well known exceptions are:

  1. Particle energy, momentum and mass
  2. Magnetic flux density

Particle energy

[edit | edit source]

For convenience, accelerator physicists would like to know the particle's kinetic energy by measuring the potential difference between the distance that the particle traverses. An electron (or a particle with the same charge) gains 1 eV in kinetic energy after traversing a potential difference of +1 Volt. Therefore,

Modern acceleration devices can achieve very large potential difference between a gap. Therefore, the units are scaled accordingly so that

For instance, the Center of Mass energy[1] of the and beams in a muon collider design[2] can reach 6 TeV. The fixed target neutrino experiment LBNF uses 120 GeV Proton on Target (POT).

Particle momentum and mass

[edit | edit source]

The total energy of a particle is the addition of its rest energy and kinetic energy: . The rest energy is defined as where is the mass of the particle and is the speed of light. Thereafter, particle mass, instead of using the standard unit kg, often uses the unit : .

For instance, the mass of an electron is kg, or . In order to acquire a kinetic energy of the rest energy of an electron, one has to accelerate it within a potential gap of 0.511 MV!

Regarding the particle momentum, physicists commonly use as the unit, because of Einstein's equation . Therefore, one can calculate the momentum of the above electron as follows:

Magnetic flux density

[edit | edit source]

The SI unit for magnetic flux density, or , is , or Tesla. In many cases, scientists do also use Gauss, where

References

[edit | edit source]