Jump to content

Ada Programming/Libraries/Ada.Numerics.Generic Complex Types

From Wikibooks, open books for an open world

Ada. Time-tested, safe and secure.
Ada. Time-tested, safe and secure.

This language feature is available from Ada 95 on.

Ada.Numerics.Generic_Complex_Types is a unit of the Predefined Language Environment since Ada 95.

The generic package Ada.Numerics.Generic_Complex_Types defines complex type for a defined floating point type. Being generic it can not only be used for predefined floating point types but also for any user defined floating type.

Usage

[edit | edit source]

There is an extensive usage guide in Ada Programming/Mathematical calculations. Here the relevant extract:

File: numeric_7.adb (view, plain text, download page, browse all)
with Ada.Numerics.Generic_Complex_Types;

procedure Numeric_7 is

  type Value_Type is digits 12 range
     -999_999_999_999.0e999 .. 999_999_999_999.0e999;

  package Complex_Types is new Ada.Numerics.Generic_Complex_Types (
     Value_Type);

  use type Complex_Types.Complex;

Specification

[edit | edit source]
--                     Standard Ada library specification
--   Copyright (c) 2003-2018 Maxim Reznik <reznikmm@gmail.com>
--   Copyright (c) 2004-2016 AXE Consultants
--   Copyright (c) 2004, 2005, 2006 Ada-Europe
--   Copyright (c) 2000 The MITRE Corporation, Inc.
--   Copyright (c) 1992, 1993, 1994, 1995 Intermetrics, Inc.
--   SPDX-License-Identifier: BSD-3-Clause and LicenseRef-AdaReferenceManual
-- -------------------------------------------------------------------------

generic
   type Real is digits <>;
package Ada.Numerics.Generic_Complex_Types is
   pragma Pure (Generic_Complex_Types);

   type Complex is
      record
         Re, Im : Real'Base;
      end record;

   type Imaginary is private;
   pragma Preelaborable_Initialization (Imaginary);

   i : constant Imaginary;
   j : constant Imaginary;

   function Re (X : Complex)   return Real'Base;
   function Im (X : Complex)   return Real'Base;
   function Im (X : Imaginary) return Real'Base;

   procedure Set_Re (X  : in out Complex;
                     Re : in     Real'Base);
   procedure Set_Im (X  : in out Complex;
                     Im : in     Real'Base);
   procedure Set_Im (X  :    out Imaginary;
                     Im : in     Real'Base);

   function Compose_From_Cartesian (Re, Im : Real'Base) return Complex;
   function Compose_From_Cartesian (Re     : Real'Base) return Complex;
   function Compose_From_Cartesian (Im     : Imaginary) return Complex;

   function Modulus (X     : Complex) return Real'Base;
   function "abs"   (Right : Complex) return Real'Base renames Modulus;

   function Argument (X     : Complex)   return Real'Base;
   function Argument (X     : Complex;
                      Cycle : Real'Base) return Real'Base;

   function Compose_From_Polar (Modulus, Argument        : Real'Base)
                               return Complex;
   function Compose_From_Polar (Modulus, Argument, Cycle : Real'Base)
                               return Complex;

   function "+"       (Right : Complex) return Complex;
   function "-"       (Right : Complex) return Complex;
   function Conjugate (X     : Complex) return Complex;

   function "+" (Left, Right : Complex) return Complex;
   function "-" (Left, Right : Complex) return Complex;
   function "*" (Left, Right : Complex) return Complex;
   function "/" (Left, Right : Complex) return Complex;

   function "**" (Left : Complex; Right : Integer) return Complex;

   function "+"       (Right : Imaginary) return Imaginary;
   function "-"       (Right : Imaginary) return Imaginary;
   function Conjugate (X     : Imaginary) return Imaginary renames "-";
   function "abs"     (Right : Imaginary) return Real'Base;

   function "+" (Left, Right : Imaginary) return Imaginary;
   function "-" (Left, Right : Imaginary) return Imaginary;
   function "*" (Left, Right : Imaginary) return Real'Base;
   function "/" (Left, Right : Imaginary) return Real'Base;

   function "**" (Left : Imaginary; Right : Integer) return Complex;

   function "<"  (Left, Right : Imaginary) return Boolean;
   function "<=" (Left, Right : Imaginary) return Boolean;
   function ">"  (Left, Right : Imaginary) return Boolean;
   function ">=" (Left, Right : Imaginary) return Boolean;

   function "+" (Left : Complex;   Right : Real'Base) return Complex;
   function "+" (Left : Real'Base; Right : Complex)   return Complex;
   function "-" (Left : Complex;   Right : Real'Base) return Complex;
   function "-" (Left : Real'Base; Right : Complex)   return Complex;
   function "*" (Left : Complex;   Right : Real'Base) return Complex;
   function "*" (Left : Real'Base; Right : Complex)   return Complex;
   function "/" (Left : Complex;   Right : Real'Base) return Complex;
   function "/" (Left : Real'Base; Right : Complex)   return Complex;

   function "+" (Left : Complex;   Right : Imaginary) return Complex;
   function "+" (Left : Imaginary; Right : Complex)   return Complex;
   function "-" (Left : Complex;   Right : Imaginary) return Complex;
   function "-" (Left : Imaginary; Right : Complex)   return Complex;
   function "*" (Left : Complex;   Right : Imaginary) return Complex;
   function "*" (Left : Imaginary; Right : Complex)   return Complex;
   function "/" (Left : Complex;   Right : Imaginary) return Complex;
   function "/" (Left : Imaginary; Right : Complex)   return Complex;

   function "+" (Left : Imaginary; Right : Real'Base) return Complex;
   function "+" (Left : Real'Base; Right : Imaginary) return Complex;
   function "-" (Left : Imaginary; Right : Real'Base) return Complex;
   function "-" (Left : Real'Base; Right : Imaginary) return Complex;
   function "*" (Left : Imaginary; Right : Real'Base) return Imaginary;
   function "*" (Left : Real'Base; Right : Imaginary) return Imaginary;
   function "/" (Left : Imaginary; Right : Real'Base) return Imaginary;
   function "/" (Left : Real'Base; Right : Imaginary) return Imaginary;

private

   type Imaginary is new Real'Base;
   i : constant Imaginary := 1.0;
   j : constant Imaginary := 1.0;

end Ada.Numerics.Generic_Complex_Types;

See also

[edit | edit source]

Wikibook

[edit | edit source]

External examples

[edit source]

Ada Reference Manual

[edit | edit source]

Ada 95

[edit | edit source]

Ada 2005

[edit | edit source]

Ada 2012

[edit | edit source]

Open-Source Implementations

[edit | edit source]

FSF GNAT

drake