Ada Programming/Subprograms
In Ada the subprograms are classified into two categories: procedures and functions. A procedures call is a statement and does not return any value, whereas a function returns a value and must therefore be a part of an expression.
Subprogram parameters may have three modes.
in
- The actual parameter value goes into the call and is not changed there; the formal parameter is a constant and allows only reading – with a caveat, see Ada Programming/Constants. This is the default when no mode is given. The actual parameter can be an expression.
in
out
- The actual parameter goes into the call and may be redefined. The formal parameter is a variable and can be read and written.
out
- The actual parameter's value before the call is irrelevant, it will get a value in the call. The formal parameter can be read and written. (In Ada 83
out
parameters were write-only.)
A parameter of any mode may also be explicitly aliased
.
access
- The formal parameter is an access (a pointer) to some variable. (This is not a parameter mode from the reference manual point of view.)
Note that parameter modes do not specify the parameter passing method. Their purpose is to document the data flow.
The parameter passing method depends on the type of the parameter. A rule of thumb is that parameters fitting into a register are passed by copy, others are passed by reference. For certain types, there are special rules, for others the parameter passing mode is left to the compiler (which you can assume to do what is most sensible). Tagged types are always passed by reference.
Explicitly aliased
parameters and access
parameters specify pass by reference.
Unlike in the C class of programming languages, Ada subprogram calls cannot have empty parameters parentheses ( )
when there are no parameters.
Procedures
[edit | edit source]A procedure call in Ada constitutes a statement by itself.
For example:
procedure
A_Test (A, B:in
Integer; C:out
Integer)is
begin
C := A + B;end
A_Test;
When the procedure is called with the statement
A_Test (5 + P, 48, Q);
the expressions 5 + P and 48 are evaluated (expressions are only allowed for in parameters), and then assigned to the formal parameters A and B, which behave like constants. Then, the value A + B is assigned to formal variable C, whose value will be assigned to the actual parameter Q when the procedure finishes.
C, being an out
parameter, is an uninitialized variable before the first assignment. (Therefore in Ada 83, there existed the restriction that out
parameters are write-only. If you wanted to read the value written, you had to declare a local variable, do all calculations with it, and finally assign it to C before return. This was awkward and error prone so the restriction was removed in Ada 95.)
Within a procedure, the return statement can be used without arguments to exit the procedure and return the control to the caller.
For example, to solve an equation of the kind :
with
Ada.Numerics.Elementary_Functions;use
Ada.Numerics.Elementary_Functions;procedure
Quadratic_Equation (A, B, C : Float; -- By default it is "in". R1, R2 :out
Float; Valid :out
Boolean)is
Z : Float;begin
Z := B**2 - 4.0 * A * C;if
Z < 0.0or
A = 0.0then
Valid := False; -- Being out parameter, it should be modified at least once. R1 := 0.0; R2 := 0.0;else
Valid := True; R1 := (-B + Sqrt (Z)) / (2.0 * A); R2 := (-B - Sqrt (Z)) / (2.0 * A);end
if
;end
Quadratic_Equation;
The function SQRT calculates the square root of non-negative values. If the roots are real, they are given back in R1 and R2, but if they are complex or the equation degenerates (A = 0), the execution of the procedure finishes after assigning to the Valid variable the False value, so that it is controlled after the call to the procedure. Notice that the out
parameters should be modified at least once, and that if a mode is not specified, it is implied in
.
Functions
[edit | edit source]A function is a subprogram that can be invoked as part of an expression. Until Ada 2005, functions can only take in
(the default) or access
parameters; the latter can be used as a work-around for the restriction that functions may not have out
parameters. Ada 2012 has removed this restriction.
Here is an example of a function body:
function
Minimum (A, B: Integer)return
Integeris
begin
if
A <= Bthen
return
A;else
return
B;end
if
;end
Minimum;
(There is, by the way, also the attribute Integer'Min
, see RM 3.5.) Or in Ada2012:
function
Minimum (A, B: Integer)return
Integeris
begin
return
(if
A <= Bthen
Aelse
B);end
Minimum;
or even shorter as an expression function
function
Minimum (A, B: Integer)return
Integeris
(if
A <= Bthen
Aelse
B);
The formal parameters with mode in
behave as local constants whose values are provided by the corresponding actual parameters. The statement return
is used to indicate the value returned by the function call and to give back the control to the expression that called the function. The expression of the return
statement may be of arbitrary complexity and must be of the same type declared in the specification. If an incompatible type is used, the compiler gives an error. If the restrictions of a subtype are not fulfilled, e.g. a range, it raises a Constraint_Error exception.
The body of the function can contain several return
statements and the execution of any of them will finish the function, returning control to the caller. If the flow of control within the function branches in several ways, it is necessary to make sure that each one of them is finished with a return
statement. If at run time the end of a function is reached without encountering a return
statement, the exception Program_Error is raised. Therefore, the body of a function must have at least one such return
statement.
Every call to a function produces a new copy of any object declared within it. When the function finalizes, its objects disappear. Therefore, it is possible to call the function recursively. For example, consider this implementation of the factorial function:
function
Factorial (N : Positive)return
Positiveis
begin
if
N = 1then
return
1;else
return
(N * Factorial (N - 1));end
if
;end
Factorial;
When evaluating the expression Factorial (4);
the function
will be called with parameter 4 and within the function it will
try to evaluate the expression Factorial (3)
, calling itself as a function, but in this case parameter N would be 3 (each call copies the parameters) and so on until N = 1 is evaluated which will finalize the recursion and then the expression will begin to be completed in the reverse order.
A formal parameter of a function can be of any type, including vectors or records. Nevertheless, it cannot be an anonymous type, that is, its type must be declared before, for example:
type
Float_Vectoris
array
(Positiverange
<>)of
Float;function
Add_Components (V: Float_Vector)return
Floatis
Result : Float := 0.0;begin
for
Iin
V'Rangeloop
Result := Result + V(I);end
loop
;return
Result;end
Add_Components;
In this example, the function can be used on a vector of arbitrary dimension. Therefore, there are no static bounds in the parameters passed to the functions. For example, it is possible to be used in the following way:
V4 : Float_Vector (1 .. 4) := (1.2, 3.4, 5.6, 7.8); Sum : Float; Sum := Add_Components (V4);
In the same way, a function can also return a type whose bounds are not known a priori. For example:
function
Invert_Components (V : Float_Vector)return
Float_Vectoris
Result : Float_Vector(V'Range); -- Fix the bounds of the vector to be returned.begin
for
Iin
V'Rangeloop
Result(I) := V (V'First + V'Last - I);end
loop
;return
Result;end
Invert_Components;
The variable Result has the same bounds as V, so the returned vector will always have the same dimension as the one passed as parameter.
A value returned by a function can be used without assigning it to a variable, it can be referenced as an expression. For example, Invert_Components (V4) (1)
, where the first element of the vector returned by the function would be obtained (in this case, the last element of V4, i.e. 7.8).
Named parameters
[edit | edit source]In subprogram calls, named parameter notation (i.e. the name of the formal parameter followed of the symbol => and then the actual parameter) allows the rearrangement of the parameters in the call. For example:
Quadratic_Equation (Valid => OK, A => 1.0, B => 2.0, C => 3.0, R1 => P, R2 => Q); F := Factorial (N => (3 + I));
This is especially useful to make clear which parameter is which.
Phi := Arctan (A, B); Phi := Arctan (Y => A, X => B);
The first call (from Ada.Numerics.Elementary_Functions) is not very clear. One might easily confuse the parameters. The second call makes the meaning clear without any ambiguity.
Another use is for calls with numeric literals:
Ada.Float_Text_IO.Put_Line (X, 3, 2, 0); -- ? Ada.Float_Text_IO.Put_Line (X, Fore => 3, Aft => 2, Exp => 0); -- OK
Default parameters
[edit | edit source]On the other hand, formal parameters may have default values. They can, therefore, be omitted in the subprogram call. For example:
procedure
By_Default_Example (A, B:in
Integer := 0);
can be called in these ways:
By_Default_Example (5, 7); -- A = 5, B = 7 By_Default_Example (5); -- A = 5, B = 0 By_Default_Example; -- A = 0, B = 0 By_Default_Example (B => 3); -- A = 0, B = 3 By_Default_Example (1, B => 2); -- A = 1, B = 2
In the first statement, a "regular call" is used (with positional association); the second also uses positional association but omits the second parameter to use the default; in the third statement, all parameters are by default; the fourth statement uses named association to omit the first parameter; finally, the fifth statement uses mixed association, here the positional parameters have to precede the named ones.
Note that the default expression is evaluated once for each formal parameter that has no actual parameter. Thus, if in the above example a function would be used as defaults for A and B, the function would be evaluated once in case 2 and 4; twice in case 3, so A and B could have different values; in the others cases, it would not be evaluated.
Renaming
[edit | edit source]Subprograms may be renamed. The parameter and result profile for a renaming-as-declaration must be mode conformant.
procedure
Solve (A, B, C:in
Float; R1, R2 :out
Float; Valid :out
Boolean)renames
Quadratic_Equation;
This may be especially comfortable for tagged types.
package
Some_Packageis
type
Message_Typeis
tagged
null
record
;procedure
Print (Message:in
Message_Type);end
Some_Package;
with
Some_Package;procedure
Mainis
Message: Some_Package.Message_Type;procedure
Printrenames
Message.Print; -- this has convention intrinsic, see RM 6.3.1(10.1/2)Method_Ref:-- thus taking 'Access should be illegal; GNAT GPL 2012 allows thisaccess
procedure
:= Print'Access
;begin
-- All these calls are equivalent: Some_Package.Print (Message); -- traditional call without use clause Message.Print; -- Ada 2005 method.object call - note: no use clause necessary Print; -- Message.Print is a parameterless procedure and can be renamed as suchMethod_Ref.-- GNAT GPL 2012 allows illegal call via an access to the renamed procedure Print -- This has been corrected in the current version (as of Nov 22, 2012)all
;end
Main;
But note that Message.Print'
is illegal, you have to use a renaming declaration as above.
Access
;
Since only mode conformance is required (and not full conformance as between specification and body), parameter names and default values may be changed with renamings:
procedure
P (X:in
Integer := 0);procedure
R (A:in
Integer := -1)renames
P;