Let
be an N-tuple. Let us define:

For functions
let us define:

This abbreviated notation will be of great use to us in the following pages and in the proof.
Let
be a field. Then
is the polynomial space in variables
with coefficients in
.
A monomial is a polynomial of the form
, such that
and
.
Let
, and let
be an exponent vector. Let us define:


- The degree of a non-zero polynomial is equal to the maximum of the degrees of its compsing monomials.
Monomial multiplication maintains exponent vector addition:
![{\displaystyle {\begin{aligned}X^{a}\!\cdot X^{b}&=(X_{1}^{a_{1}}\!\cdots X_{n}^{a_{n}})\cdot (X_{1}^{b_{1}}\!\cdots X_{n}^{b_{n}})\\[5pt]&=(X_{1}^{a_{1}}\!\cdot X_{1}^{b_{1}})\cdots (X_{n}^{a_{n}}\!\cdot X_{n}^{b_{n}})\\[5pt]&=X_{1}^{a_{1}+b_{1}}\!\cdots X_{n}^{a_{n}+b_{n}}\\[5pt]&=X^{a+b}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aad921bca0fe23a34d9e5fa22d6c17df8443b215)
Let
be monomials.
We say that
is of lower order than
(and denote it by
) if there exists an index
such that
![{\displaystyle {\begin{cases}a_{i}=b_{i}&:\!1\leq i\leq k-1\\[3pt]a_{i}<b_{i}&:i=k\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/caa68ace087542c5f84118597dc26faa12a5235c)
In other words, the vectors
have a lexicographic ordering.
In a polynomial
, the monomial of maximal order is called the leading monomial, and is denoted by
.

Let
be polynomials. Then
.
Let
be monomials, with
.
1. Let us assume that
. We will show that
for all
.
By definition, there exists an index
such that
![{\displaystyle {\begin{cases}a_{i}(+\,c_{i})=f_{i}(+\,c_{i})&:\!1\leq i\leq k-1\\[3pt]a_{i}(+\,c_{i})<f_{i}(+\,c_{i})&:i=k\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7725cf5e89e7c66f4b36ae0a1949ff0d9261a52)
2. Let us assume also that
. We will show that
.
By definition, there exist indexes
such that respectively
![{\displaystyle {\begin{aligned}&{\begin{cases}a_{i}=f_{i}&:\!1\leq i\leq k_{1}-1\\[3pt]a_{i}<f_{i}&:i=k_{1}\end{cases}},\quad {\begin{cases}b_{i}=g_{i}&:\!1\leq i\leq k_{2}-1\\[3pt]b_{i}<g_{i}&:i=k_{2}\end{cases}}\\[8pt]&{\begin{cases}1\leq k_{1}\leq k_{2}\leq n\!:&(a_{k_{1}}\!<f_{k_{1}}\!)\land (b_{k_{1}}\!\leq g_{k_{1}}\!)\,\implies \,a_{k_{1}}\!+b_{k_{1}}\!<f_{k_{1}}\!+g_{k_{1}}\\[5pt]1\leq k_{2}<k_{1}\leq n\!:&(a_{k_{2}}\!=f_{k_{2}}\!)\land (b_{k_{2}}\!<g_{k_{2}}\!)\,\implies \,a_{k_{2}}\!+b_{k_{2}}\!<f_{k_{2}}\!+g_{k_{2}}\end{cases}}\!{\Bigg \}}\,\implies \,X^{a+b}\!\prec X^{f+g}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e0926c0bc3554990762aac6861a395113e85e6b7)
hence:

Let
be a polynomial. Let us define:
![{\displaystyle {\text{D}}(F)={\Big \{}X^{a}\!\in \mathbb {F} [{\vec {X}}{}^{n}]:\deg(X^{a})\leq \deg({\text{L}}(F)),X^{a}\!\prec {\text{L}}(F){\Big \}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d3d076153e48f965b8d53e6c1d7a831e2c6452)
Meaning, the set of all monic monomials of degree
which are of lower order than
.
![{\displaystyle {\begin{aligned}&F(x_{1},x_{2})=4+3x_{1}+2x_{1}^{2}x_{2}+x_{2}^{4}\\[3pt]&{\text{L}}(F)=2x_{1}^{2}x_{2}\\[3pt]&{\text{D}}(F)={\Big \{}x_{1}x_{2}^{2},x_{1}^{2},x_{1}x_{2},x_{2}^{2},x_{1},x_{2},1{\Big \}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7aeb78fe434be63011d95b6548bf3b19002cfd63)