From Wikibooks, open books for an open world
Definition (standard n-simplex) :
The standard
n
{\displaystyle n}
-simplex is the set
Δ
n
:=
{
(
t
0
,
…
,
t
n
)
|
∀
0
≤
j
≤
n
:
t
j
≥
0
∧
∑
j
=
0
n
t
j
=
1
}
{\displaystyle \Delta _{n}:=\left\{(t_{0},\ldots ,t_{n}){\big |}\forall 0\leq j\leq n:t_{j}\geq 0\wedge \sum _{j=0}^{n}t_{j}=1\right\}}
.
Definition (singular chain complex) :
Let
X
{\displaystyle X}
be a topological space. The singular chain complex associated to
X
{\displaystyle X}
is the chain complex
C
n
(
X
)
{\displaystyle C_{n}(X)}
of abelian groups whose
n
{\displaystyle n}
-th group is given by the free abelian group over all continuous functions
σ
:
Δ
n
→
X
{\displaystyle \sigma :\Delta _{n}\to X}
and whose differential
∂
:
C
n
(
X
)
→
C
n
−
1
(
X
)
{\displaystyle \partial :C_{n}(X)\to C_{n-1}(X)}
is given by the linear extension of the formula
∂
σ
=
∑
j
=
0
n
(
−
1
)
j
σ
j
{\displaystyle \partial \sigma =\sum _{j=0}^{n}(-1)^{j}\sigma _{j}}
for
σ
:
Δ
n
→
X
{\displaystyle \sigma :\Delta _{n}\to X}
continuous,
where
σ
j
:
Δ
n
−
1
→
X
,
σ
j
(
t
0
,
…
,
t
n
−
1
)
:=
σ
(
t
0
,
…
,
t
j
−
1
,
0
,
t
j
,
…
,
t
n
−
1
)
{\displaystyle \sigma _{j}:\Delta _{n-1}\to X,\sigma _{j}(t_{0},\ldots ,t_{n-1}):=\sigma (t_{0},\ldots ,t_{j-1},0,t_{j},\ldots ,t_{n-1})}
.