Algorithm Implementation/Miscellaneous/N-Queens
Appearance
The eight queens puzzle is the problem of putting eight chess queens on an 8×8 chessboard such that none of them is able to capture any other using the standard chess queen's moves. The queens must be placed in such a way that no two queens would be able to attack each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general n queens puzzle of placing n queens on an n×n chessboard, where solutions exist only for n = 1 or n ≥ 4.
C++
[edit | edit source]A fully commented backtracking implementation in C++
#include <iostream>
using namespace std;
const int N = 5;
int position[N];
// Check if a position is safe
bool isSafe(int queen_number, int row_position)
{
// Check each queen before this one
for (int i = 0; i < queen_number; i++)
{
// Get another queen's row_position
int other_row_pos = position[i];
// Now check if they're in the same row or diagonals
if (other_row_pos == row_position || // Same row
other_row_pos == row_position - (queen_number - i) || // Same diagonal
other_row_pos == row_position + (queen_number - i)) // Same diagonal
return false;
}
return true;
}
// Recursively generate a tuple like [0 0 0 0], then [0 0 0 1] then etc...
void solve(int k)
{
if (k == N) // We placed N-1 queens (0 included), problem solved!
{
// Solution found!
cout << "Solution: ";
for (int i = 0; i < N; i++)
cout << position[i] << " ";
cout << endl;
}
else
{
for (int i = 0; i < N; i++) // Generate ALL combinations
{
// Before putting a queen (the k-th queen) into a row, test it for safeness
if (isSafe(k, i))
{
position[k] = i;
// Place another queen
solve(k + 1);
}
}
}
}
int main()
{
solve(0);
return 0;
}
C
[edit | edit source]A backtracking depth-first search (DFS) solution in C:
#include <stdio.h>
int
is_safe(int rows[8], int x, int y)
{
int i;
if (y == 0)
return 1;
for (i=0; i < y; ++i) {
if (rows[i] == x || rows[i] == x + y - i || rows[i] == x - y +i)
return 0;
}
return 1;
}
void
putboard(int rows[8])
{
static int s = 0;
int x, y;
printf("\nSolution #%d:\n---------------------------------\n", ++s);
for (y=0; y < 8; ++y) {
for (x=0; x < 8; ++x)
printf(x == rows[y] ? "| Q " : "| ");
printf("|\n---------------------------------\n");
}
}
void
eight_queens_helper(int rows[8], int y)
{
int x;
for (x=0; x < 8; ++x) {
if (is_safe(rows, x, y)) {
rows[y] = x;
if (y == 7)
putboard(rows);
else
eight_queens_helper(rows, y+1);
}
}
}
int
main()
{
int rows[8];
eight_queens_helper(rows, 0);
return 0;
}
Haskell
[edit | edit source]import Control.Monad
queens n = foldM (\y _ -> [ x : y | x <- [1..n], safe x y 1]) [] [1..n]
safe x [] n = True
safe x (c:y) n = and [ x /= c, x /= c + n, x /= c - n, safe x y (n+1)]
main = mapM_ print $ queens 8
Python
[edit | edit source]def queensproblem(rows, columns):
solutions = [[]]
for row in range(rows):
solutions = add_one_queen(row, columns, solutions)
return solutions
def add_one_queen(new_row, columns, prev_solutions):
return [solution + [new_column]
for solution in prev_solutions
for new_column in range(columns)
if no_conflict(new_row, new_column, solution)]
def no_conflict(new_row, new_column, solution):
return all(solution[row] != new_column and
solution[row] + row != new_column + new_row and
solution[row] - row != new_column - new_row
for row in range(new_row))
for solution in queensproblem(8, 8):
print(solution)
Mathematica
[edit | edit source]dispSol[sol_] := sol /. {1 -> "Q", 0 -> "-"} // Grid
solveNqueens[n_] :=
Module[{c, m, b, vars}, c = cqueens[n]; m = mqueens[n];
vars = mqueens2[n]; b = bqueens[Length[m]];
Partition[LinearProgramming[c, m, b, vars, Integers], n]]
cqueens[n_] := Table[-1, {i, n^2}]
bqueens[l_] := Table[{1, -1}, {i, l}]
mqueens2[n_] := Table[{0, 1}, {i, n^2}]
mqueens[n_] :=
Module[{t, t2, t3, t4}, t = mqueensh[n]; t2 = Append[t, mqueensv[n]];
t3 = Append[t2, mqueensd[n]]; t4 = Append[t3, mqueensdm[n]];
Partition[Flatten[t4], n^2]]
mqueensh[n_] :=
Module[{t}, t = Table[0, {i, n}, {j, n^2}];
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++, t[[i, ((i - 1)*n) + j]] = 1]]; t]
mqueensv[n_] :=
Module[{t}, t = Table[0, {i, n}, {j, n^2}];
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++, t[[j, ((i - 1)*n) + j]] = 1]]; t]
mqueensd[n_] :=
Module[{t}, t = Table[0, {i, (2*n) - 1}, {j, n^2}];
For[k = 2, k <= 2 n, k++,
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++,
If[i + j == k, t[[k - 1, ((i - 1)*n) + j]] = 1]]]]; t]
mqueensdm[n_] :=
Module[{t}, t = Table[0, {i, Sum[1, {i, 1 - n, n - 1}]}, {j, n^2}];
For[k = 1 - n, k <= n - 1, k++,
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++,
If[i == j - k, t[[k + n, ((i - 1)*n) + j]] = 1]]]]; t]