Theorem due to Flajolet and Sedgewick[1].
If
is an admissible function then
as 
where
is such that
and
.
Proof due to Flajolet and Sedgewick[2].
By Cauchy's coefficient formula:
![{\displaystyle [z^{n}]F(z)={\frac {1}{2\pi i}}\int _{C}{\frac {F(z)}{z^{n+1}}}dz}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bdaf9e568c346fc7c7dba74aec62c32b02d0487)
We can visualise this as a 3D graph whose
and
axes are the real and imaginary parts of
respectively and the
axis is the real part of
.
For the generating functions we are interested in,
has a saddle-point on the positive real axis[3]. This is the highest altitude of the green path in the above graph. Call this
.
Being an analytic function (except at
), we can deform the contour to go through the saddle-point. The biggest contributor to the integral is made by the part of the contour near the saddle-point (call this
, which is the red part of the path in the graph below). The rest of the contour (call this
, the green part of the path) contributes relatively little.

In the below, we set
![{\displaystyle [z^{n}]F(z)={\frac {1}{2\pi i}}\int _{C}{\frac {F(z)}{z^{n+1}}}dz={\frac {1}{2\pi i}}\int _{C}e^{f(z)}dz}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41aac6428947844330b911159df51428d36399ac)
We can deform the contour even more to make the part of the contour near the saddle-point a straight line (in the complex plane).
is deformed to a straight, vertical line, perpendicular to the real axis, crossing the saddle-point, starting from
to
.
is chosen such that
and
as
. This is so that the Taylor series expansion around
.
can be reduced to just
.
is real-valued because
is real and
, being a generating function, has real coefficients.
, so
is real. Therefore,
is real-valued.
So, any imaginary part of
can be moved outside the integral, leaving just a real-valued integrand:

This also means that the real-valued surface we discussed in the beginning is a valid estimate of the potentially complex-valued
.
We change variables to remove the imaginary part of the interval and turn it into a real-valued integrand over the real line. Setting
:


Because
is very small for large
:

Due to our choice of
before, as
,
.
Therefore, the integral can be estimated by a Gaussian integral which we know how to calculate:

Putting it all together:

This formalises the conditions under which we can apply the saddle-point method. Definition from Flajolet and Sedgewick[4] and Wilf[5]. Also known as Hayman-admissibility[6].
The function
is admissible if:
is a function with radius of convergence 
- There exists an
such that 
- H1:
and 
- H2: There exists a function
defined for
such that
and as 

- uniformly for

- H3: Uniformly for
and as 

To find the coefficients of a function, we can use the Cauchy coefficient formula. This requires us to find the integral of a path in the complex plane. Imagine trying to estimate this integral, displayed as the red and green line below.
The biggest contribution to the integral comes from around the saddle-point (displayed in red) and the tail's contribution (displayed in green) is negligible (by H3).
Therefore, to estimate the integral of the entire path you can estimate the integral of just the red part of the path. This is the asymptotic relation described in H2.
Example from Wilf[7] and Flajolet and Sedgewick[8].
Say we want to estimate the coefficients of
:
has radius of convergence
and is positive for all
.
- H1:
. Therefore,
.
- H1:
. Therefore,
.
- Find the saddle-point
by solving the equation
. Therefore,
and the path of integration is the circle of radius
centred at the origin.
- Choose
.
- H3: For
as
.
- H2: For
(due to the power series expansion of
).
- Apply the theorem:
.
Theorem from Flajolet and Sedgewick[9].
The above assumes
and
. In the case where all derivatives up to the
th are zero but
, we call it a saddle-point of order or multiplicity
[10].
If
has a saddle-point of order
:
![{\displaystyle [z^{n}]F(z)\sim {\frac {\omega }{p}}\Gamma \left({\frac {1}{p}}\right){\frac {F(\zeta )}{\zeta ^{(n+1)}{\sqrt[{p}]{-f^{(p)}(\zeta )/p!}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/af326622ef7b518fec4f66d98c3538c9c771e641)
where
.
- ↑ Flajolet and Sedgewick 2009, pp. 553.
- ↑ Flajolet and Sedgewick 2009, pp. 551-554.
- ↑ Flajolet and Sedgewick 2009, pp. 549.
- ↑ Flajolet and Sedgewick 2009, pp. 565.
- ↑ Wilf 2006, pp. 199.
- ↑ After Walter Hayman.
- ↑ Wilf 2006, pp. 198.
- ↑ Flajolet and Sedgewick 2009, pp. 555-557.
- ↑ Flajolet and Sedgewick 2009, pp. 603.
- ↑ Flajolet and Sedgewick 2009, pp. 545.