'Tauberian' refers to a class of theorems with many applications. The full scope of Tauberian theorems is too large to cover here.
We prove here only a particular Tauberian theorem due originally to Hardy , Littlewood and Karamata , which is useful in analytic combinatorics.
Theorem from Feller.[ 1]
If
f
(
x
)
=
∑
n
=
0
∞
a
n
x
n
∼
1
(
1
−
x
)
ρ
L
(
1
1
−
x
)
(
x
→
1
−
)
{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}\sim {\frac {1}{(1-x)^{\rho }}}L\left({\frac {1}{1-x}}\right)\qquad (x\to 1^{-})}
where the sequence
{
a
n
}
{\displaystyle \{a_{n}\}}
is monotone (always non-decreasing or always non-increasing),
0
<
ρ
<
∞
{\displaystyle 0<\rho <\infty }
and
lim
x
→
∞
L
(
c
x
)
L
(
x
)
=
1
{\displaystyle \lim _{x\to \infty }{\frac {L(cx)}{L(x)}}=1}
then
a
n
∼
n
ρ
−
1
Γ
(
ρ
)
L
(
n
)
(
n
→
∞
)
{\displaystyle a_{n}\sim {\frac {n^{\rho -1}}{\Gamma (\rho )}}L(n)\qquad (n\to \infty )}
Proof from Feller.[ 2]
We express our theorem in terms of a measure
U
{\displaystyle U}
with a density function
u
(
x
)
=
a
n
(
n
≤
x
<
n
+
1
)
{\displaystyle u(x)=a_{n}\quad (n\leq x<n+1)}
such that
U
(
n
)
=
∫
0
n
u
(
x
)
d
x
=
∑
i
=
0
n
−
1
a
i
{\displaystyle U(n)=\int _{0}^{n}u(x)dx=\sum _{i=0}^{n-1}a_{i}}
.
The Laplace transform of
U
{\displaystyle U}
is
ω
(
λ
)
=
∫
0
∞
e
−
λ
x
u
(
x
)
d
x
=
∑
n
=
0
∞
∫
n
n
+
1
u
(
x
)
e
−
λ
x
d
x
=
∑
n
=
0
∞
a
n
∫
n
n
+
1
e
−
λ
x
d
x
=
∑
n
=
0
∞
a
n
1
λ
(
e
−
n
λ
−
e
−
(
n
+
1
)
λ
)
=
1
−
e
−
λ
λ
∑
n
=
0
∞
a
n
e
−
n
λ
{\displaystyle \omega (\lambda )=\int _{0}^{\infty }e^{-\lambda x}u(x)dx=\sum _{n=0}^{\infty }\int _{n}^{n+1}u(x)e^{-\lambda x}dx=\sum _{n=0}^{\infty }a_{n}\int _{n}^{n+1}e^{-\lambda x}dx=\sum _{n=0}^{\infty }a_{n}{\frac {1}{\lambda }}(e^{-n\lambda }-e^{-(n+1)\lambda })={\frac {1-e^{-\lambda }}{\lambda }}\sum _{n=0}^{\infty }a_{n}e^{-n\lambda }}
[ 3]
By the power series expansion of
e
{\displaystyle e}
, as
λ
→
0
{\displaystyle \lambda \to 0}
,
1
−
e
−
λ
λ
=
λ
+
o
(
λ
)
λ
∼
1
{\displaystyle {\frac {1-e^{-\lambda }}{\lambda }}={\frac {\lambda +o(\lambda )}{\lambda }}\sim 1}
.
Therefore,
ω
(
λ
)
∼
f
(
e
−
λ
)
∼
1
(
1
−
e
−
λ
)
ρ
L
(
1
1
−
e
−
λ
)
∼
1
λ
ρ
L
(
1
λ
)
{\displaystyle \omega (\lambda )\sim f(e^{-\lambda })\sim {\frac {1}{(1-e^{-\lambda })^{\rho }}}L\left({\frac {1}{1-e^{-\lambda }}}\right)\sim {\frac {1}{\lambda ^{\rho }}}L\left({\frac {1}{\lambda }}\right)}
as
λ
→
0
{\displaystyle \lambda \to 0}
.
ω
(
λ
x
)
ω
(
1
x
)
∼
1
λ
ρ
L
(
x
λ
)
L
(
x
)
∼
1
λ
ρ
{\displaystyle {\frac {\omega ({\frac {\lambda }{x}})}{\omega ({\frac {1}{x}})}}\sim {\frac {1}{\lambda ^{\rho }}}{\frac {L({\frac {x}{\lambda }})}{L(x)}}\sim {\frac {1}{\lambda ^{\rho }}}}
as
x
→
∞
{\displaystyle x\to \infty }
.[ 4]
1
λ
ρ
{\displaystyle {\frac {1}{\lambda ^{\rho }}}}
is the Laplace transform of
y
ρ
−
1
Γ
(
ρ
)
{\displaystyle {\frac {y^{\rho -1}}{\Gamma (\rho )}}}
. To express this in terms of the measure
U
(
x
y
)
ω
(
1
x
)
{\displaystyle {\frac {U(xy)}{\omega ({\frac {1}{x}})}}}
, we integrate the latter to get
y
ρ
ρ
Γ
(
ρ
)
=
y
ρ
Γ
(
ρ
+
1
)
{\displaystyle {\frac {y^{\rho }}{\rho \Gamma (\rho )}}={\frac {y^{\rho }}{\Gamma (\rho +1)}}}
.
We use the continuity theorem to show that this implies
U
(
x
y
)
ω
(
1
x
)
∼
y
ρ
Γ
(
ρ
+
1
)
{\displaystyle {\frac {U(xy)}{\omega ({\frac {1}{x}})}}\sim {\frac {y^{\rho }}{\Gamma (\rho +1)}}}
, or (setting
y
=
1
{\displaystyle y=1}
)
U
(
x
)
∼
ω
(
1
x
)
Γ
(
ρ
+
1
)
∼
x
ρ
Γ
(
ρ
+
1
)
L
(
x
)
{\displaystyle U(x)\sim {\frac {\omega ({\frac {1}{x}})}{\Gamma (\rho +1)}}\sim {\frac {x^{\rho }}{\Gamma (\rho +1)}}L(x)}
.
We prove that this implies
u
(
x
)
∼
ρ
U
(
x
)
x
{\displaystyle u(x)\sim {\frac {\rho U(x)}{x}}}
.
Therefore,
a
n
=
u
(
n
)
∼
ρ
U
(
n
)
n
∼
n
ρ
−
1
Γ
(
ρ
)
L
(
n
)
{\displaystyle a_{n}=u(n)\sim {\frac {\rho U(n)}{n}}\sim {\frac {n^{\rho -1}}{\Gamma (\rho )}}L(n)}
.
A measure
U
{\displaystyle U}
assigns a positive number to a set. It is a generalisation of concepts such as length, area or volume.
Graph of u(x) shown as a step-function in blue. There are two examples of the measure U: U(1.5) is the area under the curve in orange, U{[2.4, 2.6]} is the area under the curve in green.
In our case, our measure is the area under the curve of the step function that takes the values of our coefficients,
u
(
x
)
=
a
n
(
n
≤
x
<
n
+
1
)
{\displaystyle u(x)=a_{n}\quad (n\leq x<n+1)}
. Therefore,
U
(
x
)
=
∫
0
x
u
(
y
)
d
y
{\displaystyle U(x)=\int _{0}^{x}u(y)dy}
. If
n
{\displaystyle n}
is an integer,
U
(
n
)
=
∑
i
=
0
n
−
1
a
i
{\displaystyle U(n)=\sum _{i=0}^{n-1}a_{i}}
. We define
U
{
I
}
{\displaystyle U\{I\}}
to be the area under the curve confined to the interval
I
{\displaystyle I}
. If the interval
I
{\displaystyle I}
is contained in the interval
(
n
,
n
+
1
)
{\displaystyle (n,n+1)}
for some
n
{\displaystyle n}
and
l
{\displaystyle l}
is the length of
I
{\displaystyle I}
, then
U
{
I
}
=
u
(
n
)
l
{\displaystyle U\{I\}=u(n)l}
.
A measure can be converted to a probability distribution
F
(
x
)
=
U
(
x
)
U
(
+
∞
)
{\displaystyle F(x)={\frac {U(x)}{U(+\infty )}}}
with density
f
(
x
)
=
u
(
x
)
{\displaystyle f(x)=u(x)}
, assigning a probability to how likely a random variable will take on a value less than or equal to
x
{\displaystyle x}
. We do this because probability distributions have two properties which we make use of in our proof.
We define
F
{
A
}
{\displaystyle F\{A\}}
to be the probability that a random variable will take on a value in the set
A
{\displaystyle A}
.
The expectation or mean of a probability distribution
F
{\displaystyle F}
with density
f
{\displaystyle f}
is calculated as
E
(
X
)
=
∫
−
∞
∞
x
f
(
x
)
d
x
{\displaystyle E(X)=\int _{-\infty }^{\infty }xf(x)dx}
.
We also define
E
(
u
)
=
∫
−
∞
∞
u
(
x
)
f
(
x
)
d
x
{\displaystyle E(u)=\int _{-\infty }^{\infty }u(x)f(x)dx}
.
Theorem 1
Let
{
F
n
}
{\displaystyle \{F_{n}\}}
be a sequence of probability distributions with expectations
E
n
{\displaystyle E_{n}}
, if
F
n
→
F
{\displaystyle F_{n}\to F}
then
E
n
(
u
)
→
E
(
u
)
{\displaystyle E_{n}(u)\to E(u)}
for
u
∈
C
0
(
−
∞
,
∞
)
{\displaystyle u\in C_{0}(-\infty ,\infty )}
.[ 5]
Proof
Assume
F
n
→
F
{\displaystyle F_{n}\to F}
. Let
u
{\displaystyle u}
be a continuous function such that
|
u
(
x
)
|
<
M
{\displaystyle |u(x)|<M}
for all
x
{\displaystyle x}
. Let A be an interval such that
F
{
A
}
>
1
−
ϵ
{\displaystyle F\{A\}>1-\epsilon }
, and therefore, for the complement
A
′
{\displaystyle A'}
,
F
{
A
′
}
<
2
ϵ
{\displaystyle F\{A'\}<2\epsilon }
for
n
{\displaystyle n}
sufficiently large.
Because
u
{\displaystyle u}
is continuous it is possible to partition
A
{\displaystyle A}
into intervals
I
1
,
I
2
,
⋯
{\displaystyle I_{1},I_{2},\cdots }
so small that
u
{\displaystyle u}
oscillates by less than
ϵ
{\displaystyle \epsilon }
.
We can then estimate
u
{\displaystyle u}
in
A
{\displaystyle A}
by a step function
σ
{\displaystyle \sigma }
which assumes constant values within each
I
k
{\displaystyle I_{k}}
and such that
|
u
(
x
)
−
σ
(
x
)
|
<
ϵ
{\displaystyle |u(x)-\sigma (x)|<\epsilon }
for all
x
∈
A
{\displaystyle x\in A}
. We define
σ
(
x
)
=
0
{\displaystyle \sigma (x)=0}
for
x
∈
A
′
{\displaystyle x\in A'}
, so that
|
u
(
x
)
−
σ
(
x
)
|
<
M
{\displaystyle |u(x)-\sigma (x)|<M}
for
x
∈
A
′
{\displaystyle x\in A'}
.
Therefore,
|
E
(
u
)
−
E
(
σ
)
|
≤
ϵ
F
{
A
}
+
M
F
{
A
′
}
≤
ϵ
+
M
ϵ
{\displaystyle |E(u)-E(\sigma )|\leq \epsilon F\{A\}+MF\{A'\}\leq \epsilon +M\epsilon }
.
For sufficiently large
n
{\displaystyle n}
,
|
E
n
(
u
)
−
E
n
(
σ
)
|
≤
ϵ
F
n
{
A
}
+
M
F
n
{
A
′
}
≤
ϵ
+
M
ϵ
{\displaystyle |E_{n}(u)-E_{n}(\sigma )|\leq \epsilon F_{n}\{A\}+MF_{n}\{A'\}\leq \epsilon +M\epsilon }
Because
E
n
(
σ
)
→
E
(
σ
)
{\displaystyle E_{n}(\sigma )\to E(\sigma )}
then for sufficiently large
n
{\displaystyle n}
,
|
E
(
σ
)
−
E
n
(
σ
)
|
<
ϵ
{\displaystyle |E(\sigma )-E_{n}(\sigma )|<\epsilon }
.
Putting it all together,
|
E
(
u
)
−
E
n
(
u
)
|
≤
|
E
(
u
)
−
E
(
σ
)
|
+
|
E
(
σ
)
−
E
n
(
σ
)
|
+
|
E
n
(
σ
)
−
E
n
(
u
)
|
<
3
(
M
+
1
)
ϵ
{\displaystyle |E(u)-E_{n}(u)|\leq |E(u)-E(\sigma )|+|E(\sigma )-E_{n}(\sigma )|+|E_{n}(\sigma )-E_{n}(u)|<3(M+1)\epsilon }
which implies
E
n
(
u
)
→
E
(
u
)
{\displaystyle E_{n}(u)\to E(u)}
.[ 6]
Lemma 1
Let
a
1
,
a
2
,
⋯
{\displaystyle a_{1},a_{2},\cdots }
be an arbitrary sequence of points. Every sequence of numerical functions contains a subsequence that converges for all
a
i
{\displaystyle a_{i}}
.[ 7]
Row 4,
u
n
4
{\displaystyle u_{n}^{4}}
, (in blue) is contained in the previous 3 rows, contains all the subsequent rows and converges at
a
4
{\displaystyle a_{4}}
. All
u
4
4
,
u
5
5
,
⋯
{\displaystyle u_{4}^{4},u_{5}^{5},\cdots }
(in green) are contained in
u
n
4
{\displaystyle u_{n}^{4}}
and therefore converge for
a
4
{\displaystyle a_{4}}
. This argument can be repeated for all
a
k
{\displaystyle a_{k}}
.
u
1
1
{\displaystyle u_{1}^{1}}
u
2
1
{\displaystyle u_{2}^{1}}
u
3
1
{\displaystyle u_{3}^{1}}
u
4
1
{\displaystyle u_{4}^{1}}
u
5
1
{\displaystyle u_{5}^{1}}
⋯
{\displaystyle \cdots }
u
1
2
{\displaystyle u_{1}^{2}}
u
2
2
{\displaystyle u_{2}^{2}}
u
3
2
{\displaystyle u_{3}^{2}}
u
4
2
{\displaystyle u_{4}^{2}}
u
5
2
{\displaystyle u_{5}^{2}}
⋯
{\displaystyle \cdots }
u
1
3
{\displaystyle u_{1}^{3}}
u
2
3
{\displaystyle u_{2}^{3}}
u
3
3
{\displaystyle u_{3}^{3}}
u
4
3
{\displaystyle u_{4}^{3}}
u
5
3
{\displaystyle u_{5}^{3}}
⋯
{\displaystyle \cdots }
u
1
4
{\displaystyle \color {blue}u_{1}^{4}}
u
2
4
{\displaystyle \color {blue}u_{2}^{4}}
u
3
4
{\displaystyle \color {blue}u_{3}^{4}}
u
4
4
{\displaystyle \color {green}u_{4}^{4}}
u
5
4
{\displaystyle \color {blue}u_{5}^{4}}
⋯
{\displaystyle \cdots }
u
1
5
{\displaystyle u_{1}^{5}}
u
2
5
{\displaystyle u_{2}^{5}}
u
3
5
{\displaystyle u_{3}^{5}}
u
4
5
{\displaystyle u_{4}^{5}}
u
5
5
{\displaystyle \color {green}u_{5}^{5}}
⋯
{\displaystyle \cdots }
⋮
{\displaystyle \vdots }
⋮
{\displaystyle \vdots }
⋮
{\displaystyle \vdots }
⋮
{\displaystyle \vdots }
⋮
{\displaystyle \vdots }
⋱
{\displaystyle \ddots }
Proof
For a sequence of functions
{
u
n
}
{\displaystyle \{u_{n}\}}
we can find a subsequence
u
1
1
,
u
2
1
,
⋯
{\displaystyle u_{1}^{1},u_{2}^{1},\cdots }
that converges at
a
1
{\displaystyle a_{1}}
. Out of the subsequence
u
1
1
,
u
2
1
,
⋯
{\displaystyle u_{1}^{1},u_{2}^{1},\cdots }
we find a subsequence
u
1
2
,
u
2
2
,
⋯
{\displaystyle u_{1}^{2},u_{2}^{2},\cdots }
that converges at
a
2
{\displaystyle a_{2}}
. Continue in this way to find sequences
{
u
n
k
}
{\displaystyle \{u_{n}^{k}\}}
that converge for the point
a
k
{\displaystyle a_{k}}
, but not necessarily any of the previous points.
Construct a diagonal sequence
u
1
1
,
u
2
2
,
u
3
3
,
⋯
{\displaystyle u_{1}^{1},u_{2}^{2},u_{3}^{3},\cdots }
. This sequence converges for all
a
k
{\displaystyle a_{k}}
because all but the first
k
−
1
{\displaystyle k-1}
terms are contained in
{
u
n
k
}
{\displaystyle \{u_{n}^{k}\}}
. This is true for all
k
{\displaystyle k}
.[ 8]
Theorem 2
Every sequence
{
F
n
}
{\displaystyle \{F_{n}\}}
of probability distributions possesses a subsequence
F
n
1
,
F
n
2
,
⋯
{\displaystyle F_{n_{1}},F_{n_{2}},\cdots }
that converges to a probability distribution
F
{\displaystyle F}
.[ 9]
Proof
By lemma 1, we can find a subsequence
{
F
n
k
}
{\displaystyle \{F_{n_{k}}\}}
that converges for all points
a
i
{\displaystyle a_{i}}
of a dense sequence. Denote the limit the sequence converges for each
a
i
{\displaystyle a_{i}}
by
G
(
a
i
)
{\displaystyle G(a_{i})}
. For
x
{\displaystyle x}
that are not one of
a
i
{\displaystyle a_{i}}
,
G
(
x
)
{\displaystyle G(x)}
is the greatest lower bound of all
G
(
a
i
)
{\displaystyle G(a_{i})}
for
a
i
>
x
{\displaystyle a_{i}>x}
.
G
{\displaystyle G}
is increasing between 0 and 1. If we define
F
{\displaystyle F}
to be equal to
G
{\displaystyle G}
at all points of continuity and
F
(
x
)
=
G
(
x
+
)
{\displaystyle F(x)=G(x+)}
if
x
{\displaystyle x}
is a point of discontinuity. For a point of continuity
x
{\displaystyle x}
, we can find two points such that
a
i
<
x
<
a
j
{\displaystyle a_{i}<x<a_{j}}
,
G
(
a
j
)
−
G
(
a
i
)
<
ϵ
{\displaystyle G(a_{j})-G(a_{i})<\epsilon }
and
G
(
a
i
)
≤
F
(
x
)
≤
G
(
a
j
)
{\displaystyle G(a_{i})\leq F(x)\leq G(a_{j})}
.
F
n
{\displaystyle F_{n}}
are monotone, therefore
F
n
k
(
a
i
)
≤
F
n
k
(
x
)
≤
F
n
k
(
a
j
)
{\displaystyle F_{n_{k}}(a_{i})\leq F_{n_{k}}(x)\leq F_{n_{k}}(a_{j})}
. The limit of
{
F
n
k
}
{\displaystyle \{F_{n_{k}}\}}
differs from
F
(
x
)
{\displaystyle F(x)}
by no more than
ϵ
{\displaystyle \epsilon }
, so
F
n
k
→
F
(
x
)
{\displaystyle F_{n_{k}}\to F(x)}
as
k
→
∞
{\displaystyle k\to \infty }
for all points of continuity.[ 10]
Theorem 3
If
F
n
→
F
{\displaystyle F_{n}\to F}
then the limit of every subsequence equals
F
{\displaystyle F}
.[ 11]
Proof
By the definition of limits,
|
F
n
−
F
|
<
ϵ
{\displaystyle |F_{n}-F|<\epsilon }
for
n
>
N
{\displaystyle n>N}
. Therefore, for any subsequence
{
F
n
k
}
{\displaystyle \{F_{n_{k}}\}}
,
|
F
n
k
−
F
|
<
ϵ
{\displaystyle |F_{n_{k}}-F|<\epsilon }
when
n
k
≥
n
>
N
{\displaystyle n_{k}\geq n>N}
.[ 12]
The Laplace Transform can be seen as the continuous analogue of the power series, where
∑
n
=
0
∞
a
n
x
n
{\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}}
becomes
∫
0
∞
a
(
x
)
e
−
λ
x
d
x
{\displaystyle \int _{0}^{\infty }a(x)e^{-\lambda x}dx}
.
x
n
{\displaystyle x^{n}}
is replaced by
e
−
λ
x
{\displaystyle e^{-\lambda x}}
because it is easier to integrate.
We define the Laplace transform of a probability distribution
F
{\displaystyle F}
as
ϕ
(
λ
)
=
∫
0
∞
e
−
λ
x
F
{
d
x
}
{\displaystyle \phi (\lambda )=\int _{0}^{\infty }e^{-\lambda x}F\{dx\}}
.
If
F
{\displaystyle F}
has the density
f
{\displaystyle f}
then we can also define the Laplace tranform of
F
{\displaystyle F}
as
ϕ
(
λ
)
=
∫
0
∞
e
−
λ
x
f
(
x
)
d
x
{\displaystyle \phi (\lambda )=\int _{0}^{\infty }e^{-\lambda x}f(x)dx}
.[ 13]
If our density
f
{\displaystyle f}
is zero for
x
<
0
{\displaystyle x<0}
, we can also see that the Laplace transform is equivalent to the expectation
E
(
e
−
λ
X
)
=
∫
0
∞
e
−
λ
x
f
(
x
)
d
x
{\displaystyle E(e^{-\lambda X})=\int _{0}^{\infty }e^{-\lambda x}f(x)dx}
.[ 14]
Theorem 4
Distinct probability distributions have distinct Laplace transforms.[ 15]
Theorem 5
Let
{
F
n
}
{\displaystyle \{F_{n}\}}
be a sequence of probability distributions with Laplace transforms
ϕ
n
{\displaystyle \phi _{n}}
, then
ϕ
n
→
ϕ
{\displaystyle \phi _{n}\to \phi }
implies
F
n
→
F
{\displaystyle F_{n}\to F}
.[ 16]
Proof
Because the Laplace transforms
ϕ
n
,
ϕ
{\displaystyle \phi _{n},\phi }
are equivalent to expectations, we can use theorem 1 with
u
(
x
)
=
e
−
λ
x
{\displaystyle u(x)=e^{-\lambda x}}
to prove that
F
n
→
F
{\displaystyle F_{n}\to F}
implies
ϕ
n
→
ϕ
{\displaystyle \phi _{n}\to \phi }
.
By theorem 2 , if
{
F
n
k
}
{\displaystyle \{F_{n_{k}}\}}
is a subsequence that converges to
F
′
{\displaystyle F'}
, then the Laplace transforms of
F
n
k
{\displaystyle F_{n_{k}}}
converge to the Laplace transform
ϕ
′
{\displaystyle \phi '}
of
F
′
{\displaystyle F'}
.
By assumption in the theorem, the Laplace transforms
ϕ
n
{\displaystyle \phi _{n}}
converge to
ϕ
{\displaystyle \phi }
, then by theorem 3 all its subsequences also converge to
ϕ
{\displaystyle \phi }
so that
ϕ
=
ϕ
′
{\displaystyle \phi =\phi '}
.
Because Laplace transforms are unique,
F
′
=
F
{\displaystyle F'=F}
. But this will be true for every subsequence so by theorem 3
F
n
→
F
{\displaystyle F_{n}\to F}
.[ 17]
This proof can be extended more generally to measure by defining our probability distribution in terms of the measure
U
n
{\displaystyle U_{n}}
,
F
n
=
1
ϕ
n
(
λ
)
e
−
λ
x
U
n
{
d
x
}
{\displaystyle F_{n}={\frac {1}{\phi _{n}(\lambda )}}e^{-\lambda x}U_{n}\{dx\}}
.[ 18]
Theorem 6
If
U
{\displaystyle U}
has a monotone density
u
{\displaystyle u}
and
ρ
>
0
{\displaystyle \rho >0}
then
u
(
x
)
∼
ρ
U
(
x
)
x
{\displaystyle u(x)\sim {\frac {\rho U(x)}{x}}}
as
x
→
∞
{\displaystyle x\to \infty }
.[ 19]
Proof
For
0
<
a
<
b
{\displaystyle 0<a<b}
,
∫
a
b
u
(
t
y
)
t
U
(
t
)
d
y
=
U
(
t
b
)
−
U
(
t
a
)
U
(
t
)
{\displaystyle \int _{a}^{b}{\frac {u(ty)t}{U(t)}}dy={\frac {U(tb)-U(ta)}{U(t)}}}
.
As
t
→
∞
{\displaystyle t\to \infty }
the right side tends to
b
ρ
−
a
ρ
{\displaystyle b^{\rho }-a^{\rho }}
. By theorem 2, there exists a sequence
{
t
k
}
→
∞
{\displaystyle \{t_{k}\}\to \infty }
such that
u
(
t
y
)
t
U
(
t
)
→
ψ
(
y
)
{\displaystyle {\frac {u(ty)t}{U(t)}}\to \psi (y)}
Therefore
∫
a
b
ψ
(
x
)
d
x
=
b
ρ
−
a
ρ
{\displaystyle \int _{a}^{b}\psi (x)dx=b^{\rho }-a^{\rho }}
which implies
ψ
(
y
)
=
ρ
y
ρ
−
1
{\displaystyle \psi (y)=\rho y^{\rho -1}}
. This limit is independent of the chosen sequence
{
t
k
}
{\displaystyle \{t_{k}\}}
therefore is true for any sequence. For
y
=
1
{\displaystyle y=1}
u
(
x
)
∼
ψ
(
x
)
U
(
x
)
x
=
ρ
U
(
x
)
x
{\displaystyle u(x)\sim {\frac {\psi (x)U(x)}{x}}={\frac {\rho U(x)}{x}}}
as
x
→
∞
{\displaystyle x\to \infty }
.[ 20]
A subset
A
{\displaystyle A}
of a set
X
{\displaystyle X}
is called dense if the closure of
A
{\displaystyle A}
is equivalent to
X
{\displaystyle X}
, i.e.
A
¯
=
X
{\displaystyle {\overline {A}}=X}
. This means that if
x
∈
X
{\displaystyle x\in X}
then
x
{\displaystyle x}
is either in the subset
A
{\displaystyle A}
or is on the boundary of that subset. If it is on the boundary then we can select elements of
A
{\displaystyle A}
which are arbitrarily close to
x
{\displaystyle x}
.
↑ Feller 1971, pp. 447.
↑ Feller 1971, pp. 445-447.
↑ Evertse 2024, pp. 152.
↑ Mimica 2015, pp. 19.
↑ Feller 1971, pp. 249.
↑ Feller 1971, pp. 249-250.
↑ Feller 1971, pp. 267.
↑ Feller 1971, pp. 267.
↑ Feller 1971, pp. 267.
↑ Feller 1971, pp. 267-268.
↑ Feller 1971, pp. 267.
↑ Feller 1971, pp. 267-268.
↑ Feller 1971, pp. 431-432.
↑ Feller 1971, pp. 430.
↑ Feller 1971, pp. 430.
↑ Feller 1971, pp. 431.
↑ Feller 1971, pp. 431.
↑ Feller 1971, pp. 433.
↑ Feller 1971, pp. 446.
↑ Feller 1971, pp. 446.