From Wikibooks, open books for an open world
1. Find the length of the curve

from

to

.
:
Let

Then
![{\displaystyle {\begin{aligned}s&=\int \limits _{u(0)}^{u(1)}{\frac {4}{9}}{\sqrt {u}}\,du\\&={\frac {4}{9}}\cdot {\frac {2}{3}}{\Big [}u^{\frac {3}{2}}{\Big ]}_{u(0)}^{u(1)}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}x\right)^{\frac {3}{2}}\right]_{0}^{1}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}\right)^{\frac {3}{2}}-1\right]\\&=\mathbf {\frac {13{\sqrt {13}}-8}{27}} \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1698056f2bb851198b40eaeca57953f876ed6fce)
:
Let

Then
![{\displaystyle {\begin{aligned}s&=\int \limits _{u(0)}^{u(1)}{\frac {4}{9}}{\sqrt {u}}\,du\\&={\frac {4}{9}}\cdot {\frac {2}{3}}{\Big [}u^{\frac {3}{2}}{\Big ]}_{u(0)}^{u(1)}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}x\right)^{\frac {3}{2}}\right]_{0}^{1}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}\right)^{\frac {3}{2}}-1\right]\\&=\mathbf {\frac {13{\sqrt {13}}-8}{27}} \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1698056f2bb851198b40eaeca57953f876ed6fce)
2. Find the length of the curve

from

to

.
:

:

3. Find the circumference of the circle given by the parametric equations

, with
![{\displaystyle t\in [0,2\pi ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8dbc9ed8510c75442ce1d2e73f021258fc7e04c6)
.
:

:

4. Find the length of one arch of the cycloid given by the parametric equations

, with
![{\displaystyle t\in [0,2\pi ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8dbc9ed8510c75442ce1d2e73f021258fc7e04c6)
.
:
Using the trigonometric identity

, we have

:
Using the trigonometric identity

, we have
