From Wikibooks, open books for an open world
1. Find the slope of the tangent to the curve
y
=
x
2
{\displaystyle y=x^{2}}
at
(
1
,
1
)
{\displaystyle (1,1)}
.
2. Using the definition of the derivative find the derivative of the function
f
(
x
)
=
2
x
+
3
{\displaystyle f(x)=2x+3}
.
f
′
(
x
)
=
lim
Δ
x
→
0
(
2
(
x
+
Δ
x
)
+
3
)
−
(
2
x
+
3
)
Δ
x
=
lim
Δ
x
→
0
2
x
+
2
Δ
x
+
3
−
2
x
−
3
)
Δ
x
=
lim
Δ
x
→
0
2
Δ
x
Δ
x
=
lim
Δ
x
→
0
2
=
2
{\displaystyle {\begin{aligned}f^{'}(x)&=\lim _{\Delta x\to 0}{\frac {(2(x+\Delta x)+3)-(2x+3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x+2\Delta x+3-2x-3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0}2\\&=\mathbf {2} \end{aligned}}}
f
′
(
x
)
=
lim
Δ
x
→
0
(
2
(
x
+
Δ
x
)
+
3
)
−
(
2
x
+
3
)
Δ
x
=
lim
Δ
x
→
0
2
x
+
2
Δ
x
+
3
−
2
x
−
3
)
Δ
x
=
lim
Δ
x
→
0
2
Δ
x
Δ
x
=
lim
Δ
x
→
0
2
=
2
{\displaystyle {\begin{aligned}f^{'}(x)&=\lim _{\Delta x\to 0}{\frac {(2(x+\Delta x)+3)-(2x+3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x+2\Delta x+3-2x-3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0}2\\&=\mathbf {2} \end{aligned}}}
3. Using the definition of the derivative find the derivative of the function
f
(
x
)
=
x
3
{\displaystyle f(x)=x^{3}}
. Now try
f
(
x
)
=
x
4
{\displaystyle f(x)=x^{4}}
. Can you see a pattern? In the next section we will find the derivative of
f
(
x
)
=
x
n
{\displaystyle f(x)=x^{n}}
for all
n
{\displaystyle n}
.
d
x
3
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
3
−
x
3
Δ
x
d
x
4
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
x
3
+
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
−
x
3
Δ
x
=
lim
Δ
x
→
0
x
4
+
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
Δ
x
=
lim
Δ
x
→
0
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
+
3
x
Δ
x
+
Δ
x
2
=
lim
Δ
x
→
0
4
x
3
+
6
x
2
Δ
x
+
4
x
Δ
x
2
+
Δ
x
3
=
3
x
2
=
4
x
3
{\displaystyle {\begin{alignedat}{2}{\frac {dx^{3}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{3}-x^{3}}{\Delta x}}&\qquad {\frac {dx^{4}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{3}+3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}-x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {x^{4}+4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}3x^{2}+3x\Delta x+\Delta x^{2}&&=\lim _{\Delta x\to 0}4x^{3}+6x^{2}\Delta x+4x\Delta x^{2}+\Delta x^{3}\\&=\mathbf {3x^{2}} &&=\mathbf {4x^{3}} \end{alignedat}}}
d
x
3
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
3
−
x
3
Δ
x
d
x
4
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
x
3
+
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
−
x
3
Δ
x
=
lim
Δ
x
→
0
x
4
+
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
Δ
x
=
lim
Δ
x
→
0
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
+
3
x
Δ
x
+
Δ
x
2
=
lim
Δ
x
→
0
4
x
3
+
6
x
2
Δ
x
+
4
x
Δ
x
2
+
Δ
x
3
=
3
x
2
=
4
x
3
{\displaystyle {\begin{alignedat}{2}{\frac {dx^{3}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{3}-x^{3}}{\Delta x}}&\qquad {\frac {dx^{4}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{3}+3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}-x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {x^{4}+4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}3x^{2}+3x\Delta x+\Delta x^{2}&&=\lim _{\Delta x\to 0}4x^{3}+6x^{2}\Delta x+4x\Delta x^{2}+\Delta x^{3}\\&=\mathbf {3x^{2}} &&=\mathbf {4x^{3}} \end{alignedat}}}
4. The text states that the derivative of
|
x
|
{\displaystyle \left|x\right|}
is not defined at
x
=
0
{\displaystyle x=0}
. Use the definition of the derivative to show this.
lim
Δ
x
→
0
−
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
−
−
Δ
x
Δ
x
lim
Δ
x
→
0
+
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
+
Δ
x
Δ
x
=
lim
Δ
x
→
0
−
−
1
=
lim
Δ
x
→
0
+
1
=
−
1
=
1
{\displaystyle {\begin{alignedat}{2}\lim _{\Delta x\to 0^{-}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{-}}{\frac {-\Delta x}{\Delta x}}&\qquad \lim _{\Delta x\to 0^{+}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{+}}{\frac {\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0^{-}}-1&&=\lim _{\Delta x\to 0^{+}}1\\&=-1&&=1\end{alignedat}}}
Since the limits from the left and the right at
x
=
0
{\displaystyle x=0}
are not equal, the limit does not exist, so
|
x
|
{\displaystyle \left|x\right|}
is not differentiable at
x
=
0
{\displaystyle x=0}
.
lim
Δ
x
→
0
−
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
−
−
Δ
x
Δ
x
lim
Δ
x
→
0
+
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
+
Δ
x
Δ
x
=
lim
Δ
x
→
0
−
−
1
=
lim
Δ
x
→
0
+
1
=
−
1
=
1
{\displaystyle {\begin{alignedat}{2}\lim _{\Delta x\to 0^{-}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{-}}{\frac {-\Delta x}{\Delta x}}&\qquad \lim _{\Delta x\to 0^{+}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{+}}{\frac {\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0^{-}}-1&&=\lim _{\Delta x\to 0^{+}}1\\&=-1&&=1\end{alignedat}}}
Since the limits from the left and the right at
x
=
0
{\displaystyle x=0}
are not equal, the limit does not exist, so
|
x
|
{\displaystyle \left|x\right|}
is not differentiable at
x
=
0
{\displaystyle x=0}
.
6. Use the definition of the derivative to show that the derivative of
sin
x
{\displaystyle \sin x}
is
cos
x
{\displaystyle \cos x}
. Hint: Use a suitable sum to product formula and the fact that
lim
t
→
0
sin
(
t
)
t
=
1
{\displaystyle \lim _{t\to 0}{\frac {\sin(t)}{t}}=1}
and
lim
t
→
0
cos
(
t
)
−
1
t
=
0
{\displaystyle \lim _{t\to 0}{\frac {\cos(t)-1}{t}}=0}
.
lim
Δ
x
→
0
sin
(
x
+
Δ
x
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
(
sin
(
x
)
cos
(
Δ
x
)
+
cos
(
x
)
sin
(
Δ
x
)
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
sin
(
x
)
(
cos
(
Δ
x
)
−
1
)
+
cos
(
x
)
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
lim
Δ
x
→
0
cos
(
Δ
x
)
−
1
Δ
x
+
cos
(
x
)
⋅
lim
Δ
x
→
0
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
0
+
cos
(
x
)
⋅
1
=
cos
(
x
)
{\displaystyle {\begin{aligned}\lim _{\Delta x\to 0}{\frac {\sin(x+\Delta x)-\sin(x)}{\Delta x}}&=\lim _{\Delta x\to 0}{\frac {(\sin(x)\cos(\Delta x)+\cos(x)\sin(\Delta x))-\sin(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {\sin(x)(\cos(\Delta x)-1)+\cos(x)\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot \lim _{\Delta x\to 0}{\frac {\cos(\Delta x)-1}{\Delta x}}+\cos(x)\cdot \lim _{\Delta x\to 0}{\frac {\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot 0+\cos(x)\cdot 1\\&=\cos(x)\end{aligned}}}
lim
Δ
x
→
0
sin
(
x
+
Δ
x
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
(
sin
(
x
)
cos
(
Δ
x
)
+
cos
(
x
)
sin
(
Δ
x
)
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
sin
(
x
)
(
cos
(
Δ
x
)
−
1
)
+
cos
(
x
)
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
lim
Δ
x
→
0
cos
(
Δ
x
)
−
1
Δ
x
+
cos
(
x
)
⋅
lim
Δ
x
→
0
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
0
+
cos
(
x
)
⋅
1
=
cos
(
x
)
{\displaystyle {\begin{aligned}\lim _{\Delta x\to 0}{\frac {\sin(x+\Delta x)-\sin(x)}{\Delta x}}&=\lim _{\Delta x\to 0}{\frac {(\sin(x)\cos(\Delta x)+\cos(x)\sin(\Delta x))-\sin(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {\sin(x)(\cos(\Delta x)-1)+\cos(x)\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot \lim _{\Delta x\to 0}{\frac {\cos(\Delta x)-1}{\Delta x}}+\cos(x)\cdot \lim _{\Delta x\to 0}{\frac {\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot 0+\cos(x)\cdot 1\\&=\cos(x)\end{aligned}}}
Find the derivatives of the following equations: