Jump to content

Cell Biology/Introduction/Cell biology's interest

From Wikibooks, open books for an open world

What makes Cell Biology particularly interesting is that there is so much that is not fully understood. A cell is a complex system with thousands of molecular components working together in a coordinated way to produce the phenomenon we call "life". During the 20th century these molecular components were identified (for example, see Human Genome Project), but research continues on the details of cellular processes like the control of cell division and cell differentiation. Disruption of the normal control of cell division can cause abnormal cell behavior such as rapid tumor cell growth.

Cells have complex interactions with the surrounding environment. Whether it is the external world of a single celled organism or the other cells of a multicellular organism, a complex web of interactions is present. Study of the mechanisms by which cells respond appropriately to their environments is a major part of cell biology research and often such studies involve what is called signal transduction. For example, a hormone such as insulin interacting with the surface of a cell can result in the altered behavior of hundreds of molecular components inside the cells. This sort of complex and finely tuned cell response to an external signal is required for normal metabolism and to prevent metabolic disorders like Type II diabetes.

Most of the cells of a multi-cellular organism have the same genetic material in every cell; yet, there may be hundreds of different types of cells that make up the organism's body each with its own distinctive shape, size, and function. In any case, all of these cells were developed from one special cell, a zygote. The study of how the many cell types develop during embryonic development (Developmental Biology) is a branch of Biology that is heavily dependent on the use of microscopy. Much of the control of cell differentiation is at the level of the control of gene transcription, the control of which mRNAs are made. Muscle cells make muscle proteins and nerve cells make brain proteins. Geneticists, molecular biologists and cell biologists are working to discover the details of how cells specialize to accomplish hundreds of functions from muscle contraction to memory storage.

Summary

[edit | edit source]
  • Complexity in:
    • inter-relations between cells
    • signal transduction pathways inside cells
    • control of cell death and cell reproduction
    • control of cell differentiation
    • control of cell metabolism.