Cellular Automata/Listing Preimages
Two algorithms are described for listing the preimages of a present configuration. The first algorithm is described in many texts by Andrew Wuensche the second is introduced in this book.
Preimage network
[edit | edit source]A new graph the preimage network is introduced to facilitate the description of reverse algorithms in terms of paths through the graph.
The preimage diagram of a single cell is the network of preimages of that cell. Like preimage matrices of cells in a sequence length are aligned into a chain and multiplied, preimage diagrams for each of the cells can be aligned to form the preimage network. If all the links in the De Bruijn diagram are taken into account, than only those representing neighborhoods that are mapped into the observed cell are valid links. Each link or path consisting of many links between nodes in the diagram is a locally valid path.
Elements in the multiplied preimage matrix count the preimages beginning at one of the left overlaps and ending at one of the right overlaps . In the same way there are different valid paths between the two overlaps in the preimage network.
The definition of what is globally valid depends on whether the finite lattice is bounded or cyclic.
- On a bounded lattice a globally valid path connects any overlap on the left boundary to any overlap at the right boundary.
- on a cyclic lattice a globally valid path must begin and end at the same overlap value.
A node on a locally valid path is a locally valid node. A node on a globally valid path is a globally valid node.
The arrows that point the links in the increasing direction of the position index can be omitted.
Link weights
[edit | edit source]Overlaps and neighborhoods in the preimage network can be weighted depending on the number of globally valid paths passing through them. The weights can be illustrated on the preimage network as node size (not used in the examples) and line thickness. Since the number of preimages may increase exponentially the thickness may be a logarithm of the weight.
There are two different ways to define and calculate weights depending on whether the finite lattice is bounded or cyclic.
Bounded lattice
[edit | edit source]The weights for links at position index are the product of:
- the number of paths from left boundary to the source overlap and
- the number of paths from the drain overlap to the right boundary .
Both parts of the product are contained inside preimage vectors, for the left part and for the right part.
Cyclic lattice
[edit | edit source]On a cyclic lattice the weights for links at position index are the sum over overlaps of products of:
- the number of paths from one left overlap to the source overlap and
- the number of paths from the drain overlap to the right boundary .
Because boundary overlaps must be distinguished the preimage vector is not enough and the information on the number of paths is contained in preimage matrices.
Computing weights
[edit | edit source]To compute all the link weights both preimage counts from the left boundary to each cell and from the right boundary to each cell are needed. For bounded lattices the counts are stored in preimage vectors, for cyclic lattices counts are stored in preimage matrices.
Bounded lattice
[edit | edit source]For bounded lattices the preimage counts are stored as preimage vectors. The first counts at the left and the right are boundary vectors.
Left sided counts are calculated from the left to the right, the vector at position is calculated from the vector at position . Right sided counts are calculated from the right to the left, the vector at position is calculated from the vector at position .
The total number of all preimages is calculated by applying both boundaries.
- Algorithm pseudo-code for counting from the left to the right
b[0] = b_L # the left preimage vector b[0] is initialized to the left boundary b_L for ( x=1; x<=l; x++ ) # run the position index from the left (x=0) to the right (x=l-1) b[x] = b[x-1]*D[C[x-1]] # the new preimage vector is calculated from the old using the end # preimage matrix D[C[x-1]] of the cell value C[x-1] at position x-1 p = 0 # for ( o=0; o<|S|^(k-1); o++ ) # the number of all preimages p is the scalar product of p += b[l][o] * b_R[o] # the last right preimage vector b[l] and the right boundary vector b_R end #
- Algorithm pseudo-code for counting from the right to the left
b[l] = b_R # the right preimage vector b[l] is initialized to the right boundary b_R for ( x=l-1; x>=0; x-- ) # run the position index from the right (x=l-1) to the left (x=0) b[x] = D[C[x]]*b[x+1] # the new preimage vector is calculated from the old using the end # preimage matrix D[C[x]] of the cell value C[x] at position x p = 0 # for ( o=0; o<|S|^(k-1); o++ ) # the number of all preimages p is the scalar product of p += b_L[o] * b[0][o] # the last left preimage vector b[0] and the left boundary vector b_L end #
Cyclic lattice
[edit | edit source]For cyclic lattices the counts are stored as preimage matrices, this is necessary to distinguish counts for each of the overlaps at the joined boundaries. Since the lattice is cyclic, there is no need to apply a boundary vector as in the bounded lattice.
Left sided counts are calculated from the left to the right, the matrix at position is calculated from the matrix at position . Right sided counts are calculated from the right to the left, the matrix at position is calculated from the matrix at position .
The number of preimages must be counted separately for each of the overlaps at the joined boundaries . A cyclic preimage (row) vector is constructed from the diagonal elements of the preimage matrix .
The total number of all preimages is the sum of the elements in the cyclic preimage vector (row), the scalar product with the unrestricted boundary vector (row transposed into column).
- Algorithm pseudo-code for counting from the left to the right
D[0] = I # the left preimage matrix D[0] is initialized to the identity matrix for ( x=1; x<l; x++ ) # run the position index from the left (x=0) to the right (x=l-1) D[x] = b[x-1]*D[C[x]] # the new preimage matrix is calculated from the old using the end # preimage matrix D[C[x]] of the cell value C[x] at position x p = 0 # for ( o=0; o<|S|^(k-1); o++ ) # the number of all preimages p is the scalar product of p += D[l-1][o][o] # the sum of the diagonal elements of the right preimage matrix D(l-1) b_0[o] = D[0][o][o] # the diagonal are copied into the cyclic preimage vector b_0 end #
- Algorithm pseudo-code for counting from the right to the left
D[l] = I # the right preimage matrix D[l] is initialized to the identity matrix for ( x=l-1; x>=0; x-- ) # run the position index from the right (x=l-1) to the left (x=0) D[x] = D[C[x]]*b[x+1] # the new preimage matrix is calculated from the old using the end # preimage matrix D[C[x]] of the cell value C[x] at position x p = 0 # for ( o=0; o<|S|^(k-1); o++ ) # the number of all preimages p is the scalar product of p += D[0][o][o] # the sum of the diagonal elements of the left preimage matrix D(0) b_0[o] = D[0][o][o] # the diagonal are copied into the cyclic preimage vector b_0 end #
String operations
[edit | edit source]Preimages as paths in the preimage network are described in terms of neighborhoods and overlaps, which are both sequences of cells. Since neighborhoods on a globally valid path overlap, each cell can be found in neighborhoods and in overlaps.
Neighborhoods are represented by links in the preimage diagrams and networks. The neighborhood surrounding the cell is defined as
Overlaps are represented by nodes in the preimage diagrams and networks. The overlap surrounding the cell is defined as
Sequences can be represented and manipulated in two ways:
- compact representations are manipulated using algebraic operations (multiplication, division (quotient without remainder) and modulo)
- bit arrays are manipulated using boolean logical operations (shifts, fusion with OR and masking with AND) each cell consumes
Extracting the observed cell
[edit | edit source]Extracting from the neighborhood
[edit | edit source]Algebraic notation
Logic notation
- c_x = (n_x >> m*(k-k_0-1)) AND (2^m-1)
Extracting from the overlap
[edit | edit source]Algebraic notation
Logic notation
- c_x = (o_x >> m*(k-k_0)) AND (2^m-1)
Transformations between overlaps and neighborhoods
[edit | edit source]Extending an overlap into a neighborhood
[edit | edit source]A neighborhood (length ) is created from an overlap (length ) by adding one cell at the left or the right side.
String notation (concatenation of cell strings)
Algebraic notation
Logic notation
- n_x = (o_x << m) OR c
- n_x-1 = (c << m(k-1)) OR o_x
Shortening a neighborhood into an overlap
[edit | edit source]An overlap (length ) is created from a neighborhood (length ) by removing one cell at the left or the right side.
String notation
- means string without the extreme right symbol
- means string without the extreme left symbol )
Algebraic notation
Logic notation
- n_x = o_x >> m
- n_x+1 = o_x AND (2^(m*(k-1))-1)
Trace and backtrack algorithm
[edit | edit source]This algorithm traces paths through the preimage diagram. It starts at the first node at the left that is not masked by left boundary conditions. Depending on the position index value and whether there are links to the right there are four options:
- tracing the first unused valid link to the next node and remembering the selected path
- if the reached node is at the right boundary, validity of the boundary is tested and the path is stored as a preimage
- if there are no unused links to the right, backtrack to the previous node on the current path
- when backtracking reaches the left boundary, the tracing restarts at the next valid node till all nodes are exhausted.
The algorithm could start at the right and trace to the left obtaining the same preimages. The direction tracking is chosen so that the listed preimages are sorted in an ascending order regarding their compact representation.
Fromal algorithm description
[edit | edit source]Most parts of the algorithm are identical for bounded and cyclic latices, the differences are seen only at the boundaries.
- Main loop and left boundary
The main loop counts through the available tracing start points. The algorithm begins tracing by the first overlap at the left (on bounded lattices overlaps masked by the left boundary are skipped). When all the traces beginning with this overlap are exhausted (backtracking reaches the left boundary and the link index exceeds the number of available links ) tracing continues to the next valid overlap till it reaches the last overlap . When traces from the last overlap are exhausted the algorithm finishes. On bounded lattices overlaps may be unrestricted or masked by a boundary vector . On cyclic latices all overlaps are used.
- Tracing
The tracing increments the current position index . Each tracing step begins at the current overlap at position and traces the first not yet traced link to the drain overlap at position index . There are links to be traced, if the current overlap has not yet been backtracked than tracing begins at link otherwise the link provided by the backtracking is incremented. The validity of the trace step must be verified, each link represents a neighborhood that must lead to the present cell value .
- If the link is valid, its index is stored as a new cell on the currently traced path and the algorithm continues from the drain node .
- If the link is not valid than the tracing must proceed with the next link , if there are no links left than the algorithm switches to backtracking.
- Backtracking
Backtracking is returning back on the current path till the point where an available link for tracing is found. The current overlap without further paths is each backtracking step steps backward on the current path over the link to the overlap at position index . The backward link and the source overlap are sequences on the current path. When back at the source cell, the link to trace forward is incremented from the last traced link .
- Right boundary and listing of preimages
When tracing reaches the right boundary listing a preimage can begin.
- For cyclic lattices the current overlap is compared to the starting overlap at the left , if they are equal a preimage of length is added to the preimage list.
- For bounded lattices the current overlap is masked by the right boundary vector , if accepted a preimage of length is added to the preimage list.
For each new preimage the preimage counter is incremented.
Algorithm pseudo-code
[edit | edit source]p=0 # the preimage counter is initialized to 0 x=0 # the position index is initialized to 0 c=0 # the link index is initialized to 0 o_L=0 # the tracing starts at the first left overlap while (bounded) then # if the lattice is bounded if ( b[o_L]>0 ) then # boundary conditions must be checked o_L++ # to ensure the start point is valid end_if # end_while # o=o_L # the current overlap is initialized while (o_L<|S|^(k-1)) then ## main loop ## if ( c<|S| ) then # tracing and right boundary if ( x<l ) then ## tracing ## n=o*|S|+c # the neighborhood is created if ( f(n)==c_x ) then # checking it the neighborhood is valid o=(o*|S|+c)/|S|^k # stepping to the new overlap at the right C[x+k-k0-1]=c # storing the link selection cell x++ # incrementing the position index c=0 # at the new overlap start with the first link else # the selected link is not valid c++ # try the next link end_if # end_if # else ## right and cyclic boundary conditions ## if (bounded) # for bounded lattices if ( b[o]>0 ) then # check masking of the current overlap with the right boundary vector store(C) # list the preimage consisting of cells on the current path end_if # end_if # if (cyclic) # for cyclic lattices if ( o==o_L ) then # check if overlaps at the left and right boundary are equal store(C) # list the preimage consisting of cells on the current path end_if # end_if # c=|S| # to prevent further tracing from the boundary end_if # else # backtracking and left boundary if ( x==0 ) then ## left boundary conditions ## o_L++ # move to the next start point for tracing if (bounded) then # for bounded lattices if ( b[o_L]>0 ) # check masking of the left overlap by the left boundary vector c=0 # move to the next start point for tracing else # else if the current overlap is not valid o_L++ # move to the next start point for tracing end_if # else_if (cyclic) then # for cyclic lattices c=0 # end_if # else ## backtracking ## o=(C[x-k0-1]*|S|^(k-1)+o)/|S| # backtracking to the previous overlap c=C[x+k-k0-1] # restoring the last used link at this overlap c++ # at the backtracked overlap continue with the next link x-- # decrementing the position index end_if # end_if end # if all start points are exhausted end the algorithm
Algorithm complexity
[edit | edit source]The algorithm can be divided into two time consuming operations
- tracing and backtracking
- listing preimages
The algorithm visits all links and nodes accessible from the boundary where it starts. Accessibilyti of overlaps and neighborhoods is defined as an induction:
- Base
- Overlaps at the starting boundary (left here) are acessible if they are valid .
- Induction
- Every neighborhood sourced at an acessible node is acessible. Every drain overlap to an acessible and valid neighborhood is acessible.
The valid accessible links are visited exactly twice (first while tracing and secondly while backtracking), invalid lins are visited only once (their validity is evaluated by tracing). A simple aproximation for the tracing time is counting all the accessible overlaps, counting must be performed for each of the overlaps at the boundary so preimage matrices must be used for counting.
An arbitrary overlap is accessible from a valid overlap at the left boundary if there is at least one valid path between the two . Accessibility of overlaps at position index can be extracted from the preimage matrix by transformning its elements into boolean values or by using bolean multiplication to calculate preimage matrices . The algorithm complexity of tracing is the sum of all accessible overlaps.
The upper boud to the processing time is a linear function of the observed configuration size but grows exponentially with the increasing neighborhood size (preimage diagram size).
The time required for listing of preimages is a linear function of the number of preimages , where the time to compute a single preimage is a linear function of the configuration length .
Memory consumption of the algorithm is minimal, only the current path in the preimage network is stored and used for listing if a valid preimage is found.
Count and list algorithm
[edit | edit source]This algorithm consists of a first backward or counting pass that counts the preimages and a second forward or listing pass that lists them. The trace and backtrack algorithm must trace each link before knowing if it leads to a valid preimage, on the other hand the counting pass produces information obout wheather and how many preimages there are for each link. All the preimages can be listed without backtracking.
The direction of the listing pass could be inverted but is chosen so that the listed preimages are sorted in an ascending order regarding their compact representation, the counting pass is in the opposite direction.
Formal algorithm description
[edit | edit source]Booth the forward (left to right, producing vectors) and backward (right to left, producing vectors) counting passes have been described above, while computing weights for the preimage network. Only one of the passes is needed, here the backward pass is used.
The listing pass can be divided into initialization and a few steps inside the main loop.
- Initialization
Since the number of preimages has been calculated by the counting pass, memory can be allocated for them in advance. The array of starting overlaps holds the value of the starting point for each preimage (valid path in the preimage network). The number of preimages using each starting overlap is computed as a weight vector for overlaps at the left boundary. For bounded lattices the left boundary and the preimage count from the righ end to the left are used.
For cyclyc lattices the preimage matrix of the whole sequence is used.
The array of starting overlaps is copied into the array of overlaps at the current position index and the listing can start.
- Listing
The listing starts at the left boundary and ends at the right boundary . At each increment of the position index one cell is computed for each of the preimages.
To simplify the algorithem the right cell in the neighborhood is stored. The first cells of preimages on a bounded lattice can be computed from the starting overlap . For cyclic lattices the last cells at the right can be wraped to the beginning.
Algorithm pseudocode
[edit | edit source]C = malloc( p * (l+k-1) * |S| ) # reserve memory for the counted amount of preimages # i = 0 # start with the first preimage for ( o=0; o<|S|^(k-1); o++ ) # for all overlaps for ( j=0; j<b_L[0][o]*b_R[0][o]; i++ ) # for each overlap the number of preimages is calcuated o_x[i] = o # i-th preimage path begins with overlap o i++ # to the next preimage end_for # end_for # if (cyclyc) # for bounded lattices there is no need to know the starting points o_L = o_R = o_x # copy the current array of overlap to the array of starting overlaps end_if # for ( x=0; x<l; x++ ) # run from the left to the right i = 0 # start with the first preimage while ( i< p ) # check if all preimages have been finished for ( c=0; c<|S|; c++) # check all links for each source overlap o_x[i] = (o_x[i]*|S|+c) / |S|^(k-1) # calculate the drain overlap elseif (bounded) # for bounded lattices w = b_R[x+1][o_x[i]] # the count from the drain node to the right end is used if (cyclic) # for cyclic lattices w = D_R[x+1][o_x[i],o_L[i]] # the count from the drain node to the end node (same as left) end_if # for ( j=0; j<w; j++ ) # use the count C[i][x+k-k0-1] = c # and write a cell for each of them i++ # increment the preimage counter end_for # end_for # end_while # end_for # end of algorithm
Algorithm complexity
[edit | edit source]The complexity of the counting is a linear function of the configuration length . The dependence on the neighborhood size is not qubic since there at most nonzero elements in the preimage matrix of a single cell. If the lattice is bounded the counts are stored as vectors and the complexity is linear, for cyclic lattices counts are stored as vectors and the complexity is quadratic.
The complexity of the listing is again a linear function of the configuration length and the number of preimages.
The counting by matrix multiplication processes all the nodes in the primage diagram instead the tracing and backtracking from the previous algorithm avoids some nodes gaining on everage complexity, on the other hand this algorith is easier to optimize.
Memory consumption is another downside, and it grows as fast as time for counting.
Proofs
[edit | edit source]References
[edit | edit source]- Andrew Wuensche and Mike Lesser, The Global Dynamics of Cellular Automata An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata
- Wuensche,A.,(1997), Attractor Basins of Discrete Networks, Cognitive Science Research Paper 461, Univ. of Sussex, D.Phil thesis
- Vladimir Batagelj, Efficient Algorithms for Citation Network Analysis (2003)
- J. C. Seck Tuoh, G. Juárez y H. V. McIntosh, Calculating ancestors in one-dimensional cellular automata, International Journal of Modern Physics C, Vol 15, No. 8, pp 1151-1169, October 2004
- MathPages
- Iztok Jeras, Andrej Dobnikar, Algorithms for computing preimages of cellular automata configurations (PDF)
Software
[edit | edit source]- DDLab Tools for researching Cellular Automata, Random Boolean Networks, multi-value Discrete Dynamical Networks, and beyond; by Andy Wuensche.
- Iztok Jeras, Algorithms for computing preimages of cellular automata configurations TAR.BZ2