Parallel RL circuit for example 10
Given that the current source is defined by
I
s
(
t
)
=
120
2
c
o
s
(
377
t
+
120
∘
)
{\displaystyle I_{s}(t)=120{\sqrt {2}}cos(377t+120^{\circ })}
, find all other voltages and currents and check power.
Parallel RL circuit marked up for analysis
In a parallel circuit, all devices have the exact same voltage across them.
Knowns:
I
s
,
R
,
L
{\displaystyle I_{s},R,L}
Unknowns:
V
s
,
i
R
,
i
L
{\displaystyle V_{s},i_{R},i_{L}}
Equations:
V
s
(
t
)
=
R
∗
i
R
(
t
)
,
V
s
=
L
∗
d
d
t
i
L
(
t
)
,
i
R
(
t
)
+
i
L
(
t
)
−
I
s
(
t
)
=
0
{\displaystyle V_{s}(t)=R*i_{R}(t),V_{s}=L*{d \over dt}i_{L}(t),i_{R}(t)+i_{L}(t)-I_{s}(t)=0}
mupad attempt to do some of phasor algebra ... need to find a way to solve symbolically for the real and imaginary parts in rectangular form and polar form, plus find a way to numerically evaluate .. m-file
Evaluate the terminal relations in this order:
i
R
(
t
)
=
V
s
R
{\displaystyle i_{R}(t)={\frac {V_{s}}{R}}}
i
L
(
t
)
=
∫
V
s
L
d
t
{\displaystyle i_{L}(t)=\int {\frac {V_{s}}{L}}dt}
Substitute into this equation:
I
s
(
t
)
=
i
R
(
t
)
+
i
L
(
t
)
{\displaystyle I_{s}(t)=i_{R}(t)+i_{L}(t)}
I
s
(
t
)
=
V
s
R
+
∫
V
s
L
d
t
{\displaystyle I_{s}(t)={\frac {V_{s}}{R}}+\int {\frac {V_{s}}{L}}dt}
Need to formulate as a differential equation (to keep mathematicians happy) so differentiate all sides (don't let them see you doing this):
d
I
s
(
t
)
d
t
=
1
R
d
V
s
d
t
+
V
s
L
{\displaystyle {dI_{s}(t) \over dt}={\frac {1}{R}}{dV_{s} \over dt}+{\frac {V_{s}}{L}}}
So have a differential equation that can be solved for
V
s
{\displaystyle V_{s}}
.
now transform both operations into the phasor domain ..
I
s
(
t
)
→
I
s
→
I
m
∠
ϕ
{\displaystyle {I_{s}}(t)\rightarrow \mathbb {I} _{s}\rightarrow I_{m}\angle \phi }
V
s
(
t
)
→
V
s
{\displaystyle V_{s}(t)\rightarrow \mathbb {V} _{s}}
∫
V
s
(
t
)
d
t
→
1
j
ω
V
s
{\displaystyle \int V_{s}(t)dt\rightarrow {\frac {1}{j\omega }}\mathbb {V} _{s}}
So:
I
s
=
V
s
R
+
V
s
j
ω
L
{\displaystyle \mathbb {I} _{s}={\frac {\mathbb {V} _{s}}{R}}+{\frac {\mathbb {V} _{s}}{j\omega L}}}
or
j
ω
I
s
=
j
ω
V
s
R
+
V
s
L
{\displaystyle j\omega \mathbb {I} _{s}=j\omega {\frac {\mathbb {V} _{s}}{R}}+{\frac {\mathbb {V} _{s}}{L}}}
Solving for
V
s
{\displaystyle \mathbb {V} _{s}}
V
s
=
I
s
j
ω
L
R
R
+
j
ω
L
{\displaystyle \mathbb {V} _{s}={\frac {\mathbb {I} _{s}j\omega LR}{R+j\omega L}}}
Putting in Rectangular form:
V
s
=
I
s
∗
ω
2
L
2
R
+
j
ω
L
R
2
R
2
+
ω
2
L
2
{\displaystyle \mathbb {V} _{s}=\mathbb {I} _{s}*{\frac {\omega ^{2}L^{2}R+j\omega LR^{2}}{R^{2}+\omega ^{2}L^{2}}}}
Putting in Polar form:
V
s
=
I
s
(
ω
2
L
2
R
)
2
+
(
ω
L
R
2
)
2
R
2
+
ω
2
L
2
∠
arctan
(
R
ω
L
)
{\displaystyle \mathbb {V} _{s}=\mathbb {I} _{s}{\frac {\sqrt {(\omega ^{2}L^{2}R)^{2}+(\omega LR^{2})^{2}}}{R^{2}+\omega ^{2}L^{2}}}\angle \arctan({\frac {R}{\omega L}})}
V
s
(
t
)
=
I
m
(
ω
2
L
2
R
)
2
+
(
ω
L
R
2
)
2
R
2
+
ω
2
L
2
cos
(
ϕ
+
arctan
(
R
ω
L
)
)
{\displaystyle V_{s}(t)=I_{m}{\frac {\sqrt {(\omega ^{2}L^{2}R)^{2}+(\omega LR^{2})^{2}}}{R^{2}+\omega ^{2}L^{2}}}\cos(\phi +\arctan({\frac {R}{\omega L}}))}
There will be an integration constant, but it is impossible to calculate now.
This is from a differential equation.
Will calculate the integration constant after adding the homogeneous solution to the above particular solution.
phasor numeric solution combines all phasors in rectangular form then goes straight to the polar answer form. Angle is in the third quadrant... m-file
Evaluate the terminal relations in this order:
i
R
(
t
)
=
V
s
10
{\displaystyle i_{R}(t)={\frac {V_{s}}{10}}}
i
L
(
t
)
=
∫
V
s
.01
d
t
{\displaystyle i_{L}(t)=\int {\frac {V_{s}}{.01}}dt}
Substitute into this equation:
I
s
(
t
)
=
i
R
(
t
)
+
i
L
(
t
)
{\displaystyle I_{s}(t)=i_{R}(t)+i_{L}(t)}
So have a differential equation that can be solved for
V
s
{\displaystyle V_{s}}
:
I
s
(
t
)
=
V
s
10
+
∫
V
s
.01
d
t
{\displaystyle I_{s}(t)={\frac {V_{s}}{10}}+\int {\frac {V_{s}}{.01}}dt}
plugging into the symbolic time domain solution created from phasor analysis ... same angle in the third quadrant ... positive this time m-file
Choosing to do calculation in time domain
V
s
(
t
)
=
120
∗
2
(
377
2
∗
.01
2
∗
10
)
2
+
(
377
∗
.01
∗
10
2
)
2
10
2
+
377
2
∗
.01
2
cos
(
377
t
+
2
∗
π
3
+
arctan
(
10
377
∗
.01
)
)
{\displaystyle V_{s}(t)=120*{\sqrt {2}}{\frac {\sqrt {(377^{2}*.01^{2}*10)^{2}+(377*.01*10^{2})^{2}}}{10^{2}+377^{2}*.01^{2}}}\cos(377t+{\frac {2*\pi }{3}}+\arctan({\frac {10}{377*.01}}))}
V
s
(
t
)
=
599
cos
(
377
t
+
3.30
)
{\displaystyle V_{s}(t)=599\cos(377t+3.30)}
i
R
(
t
)
=
59.9
cos
(
377
t
+
3.30
)
{\displaystyle i_{R}(t)=59.9\cos(377t+3.30)}
i
L
(
t
)
=
159
sin
(
377
t
+
3.30
)
=
159
cos
(
377
t
+
1.74
)
{\displaystyle i_{L}(t)=159\sin(377t+3.30)=159\cos(377t+1.74)}
Evaluate the terminal relations in this order:
i
R
(
t
)
=
V
s
R
{\displaystyle i_{R}(t)={\frac {V_{s}}{R}}}
i
L
(
t
)
=
∫
V
s
L
d
t
{\displaystyle i_{L}(t)=\int {\frac {V_{s}}{L}}dt}
Substitute into this equation:
I
s
(
t
)
=
i
R
(
t
)
+
i
L
(
t
)
{\displaystyle I_{s}(t)=i_{R}(t)+i_{L}(t)}
So have a differential equation that can be solved for
V
s
{\displaystyle V_{s}}
:
I
s
(
t
)
=
V
s
R
+
∫
V
s
L
d
t
{\displaystyle I_{s}(t)={\frac {V_{s}}{R}}+\int {\frac {V_{s}}{L}}dt}
now transform both into the laplace domain ..
I
s
(
t
)
→
L
{
I
s
(
t
)
}
{\displaystyle {I_{s}}(t)\rightarrow {\mathcal {L}}\left\{{I_{s}}(t)\right\}}
V
s
(
t
)
→
L
{
V
s
(
t
)
}
{\displaystyle V_{s}(t)\rightarrow {\mathcal {L}}\left\{V_{s}(t)\right\}}
∫
V
s
(
t
)
d
t
→
1
s
L
{
V
s
(
t
)
}
{\displaystyle \int V_{s}(t)dt\rightarrow {\frac {1}{s}}{\mathcal {L}}\left\{V_{s}(t)\right\}\ }
So:
L
{
I
s
(
t
)
}
=
L
{
V
s
(
t
)
}
R
+
L
{
V
s
(
t
)
}
s
L
{\displaystyle {\mathcal {L}}\left\{{I_{s}}(t)\right\}={\frac {{\mathcal {L}}\left\{V_{s}(t)\right\}}{R}}+{\frac {{\mathcal {L}}\left\{V_{s}(t)\right\}}{sL}}}
Solving for
L
{
V
s
(
t
)
}
{\displaystyle {\mathcal {L}}\left\{V_{s}(t)\right\}}
L
{
V
s
(
t
)
}
=
{\displaystyle {\mathcal {L}}\left\{V_{s}(t)\right\}=}
L
{
I
s
(
t
)
}
L
s
R
R
+
s
L
{\displaystyle {\frac {{{\mathcal {L}}\left\{{I_{s}}(t)\right\}}LsR}{R+sL}}}
At this point the Laplace symbolic solution has to stop. The next steps depend upon the form of
L
{
I
s
(
t
)
}
{\displaystyle {{\mathcal {L}}\left\{{I_{s}}(t)\right\}}}
.
This can not be done without
L
{
I
s
(
t
)
}
{\displaystyle {{\mathcal {L}}\left\{{I_{s}}(t)\right\}}}
. The form of the function
L
{
I
s
(
t
)
}
{\displaystyle {{\mathcal {L}}\left\{{I_{s}}(t)\right\}}}
determines the inverse mapping.
laplace solution has the same problems as before ... constants ... sin term with wrong sign m-file
I
s
(
t
)
=
120
2
c
o
s
(
377
t
+
2.09
)
{\displaystyle I_{s}(t)=120{\sqrt {2}}cos(377t+2.09)}
R
=
10
{\displaystyle R=10}
L
=
.01
{\displaystyle L=.01}
I
s
(
t
)
→
L
{
I
s
(
t
)
}
=
L
{
120
2
c
o
s
(
377
t
+
120
∘
)
}
=
−
(
170.0
∗
(
0.5
∗
s
+
326.0
)
)
(
s
2
+
142129
)
{\displaystyle {I_{s}}(t)\rightarrow {\mathcal {L}}\left\{{I_{s}}(t)\right\}={\mathcal {L}}\left\{120{\sqrt {2}}cos(377t+120^{\circ })\right\}=-{\frac {(170.0*(0.5*s+326.0))}{(s^{2}+142129)}}}
L
{
V
s
(
t
)
}
=
−
17.0
∗
s
∗
(
0.5
∗
s
+
326.0
)
(
s
2
+
142129
)
10
+
.01
∗
s
{\displaystyle {\mathcal {L}}\left\{V_{s}(t)\right\}={\frac {\frac {-17.0*s*(0.5*s+326.0)}{(s^{2}+142129)}}{10+.01*s}}}
V
s
(
t
)
=
L
−
1
{
i
(
t
)
}
=
(
−
2.58
)
∗
e
−
t
.001
+
97.2
s
i
n
(
377
t
)
−
591
c
o
s
(
377
∗
t
)
{\displaystyle V_{s}(t)={\mathcal {L}}^{-1}\left\{i(t)\right\}=(-2.58)*e^{-{\frac {t}{.001}}}+97.2sin(377t)-591cos(377*t)}
V
s
(
t
)
=
599
cos
(
377
t
−
2.98
)
{\displaystyle V_{s}(t)=599\cos(377t-2.98)}
... from numeric solution out of phasor domain
V
s
(
t
)
=
599
cos
(
377
t
+
3.30
)
{\displaystyle V_{s}(t)=599\cos(377t+3.30)}
... solution from substituting into symbolic time domain
Phase angles are exactly the same place in the third quadrant.
i
r
{\displaystyle i_{r}}
is in phase with
V
s
{\displaystyle V_{s}}
as it should.
V
s
{\displaystyle V_{s}}
is leading
i
L
{\displaystyle i_{L}}
through the inductor by
π
2
{\displaystyle {\frac {\pi }{2}}}
as it should. Everything appears centered around 0 volts, so no constants are in play.
The period above looks to be between 16ms and 17ms, closer to 17ms. This agrees with the formula:
ω
=
2
π
∗
f
{\displaystyle \omega =2\pi *f}
f
=
ω
2
π
{\displaystyle f={\frac {\omega }{2\pi }}}
T
=
1
f
=
2
π
ω
=
2
π
377
=
16.7
m
s
{\displaystyle T={\frac {1}{f}}={\frac {2\pi }{\omega }}={\frac {2\pi }{377}}=16.7ms}
The magnitude of V_s is above 500 volts .. although perhaps not 600 volts.
Everything starts out at zero. This means that only the middle to right side of the simulation windows are going to display steady state information that we can compare to calculated values.
I
s
{\displaystyle I_{s}}
brown,
i
R
{\displaystyle i_{R}}
blue (with same phase angle as source voltage), and
i
L
{\displaystyle i_{L}}
(orange).
i
R
V
s
{\displaystyle i_{R}V_{s}}
(blue) leads
i
L
{\displaystyle i_{L}}
(orange) by
π
2
{\displaystyle {\frac {\pi }{2}}}
. The brown current (the starting point) is the starting point at 2.09 radians. The blue current should lead the brown by 3.30-2.09=1.21 radians which is 69.3 degrees which is about 3.21 ms or 1.5 squares above. This can not be seen at the beginning where the simulation software is dealing with the initial energy embalance, but by the middle of the simulation, the blue is leading the brown by about 1.5 squares. So all is well.
The constants are going to add some DC power or real power to this analysis. Without knowing what they are, we can not compute their impact. So for now we stick with phasor domain power analysis:
I
s
=
120
2
∠
2.09
{\displaystyle \mathbb {I} _{s}=120{\sqrt {2}}\angle 2.09}
V
s
=
599
∠
3.30
{\displaystyle \mathbb {V} _{s}=599\angle 3.30}
I
s
∗
=
120
2
∠
−
2.09
{\displaystyle \mathbb {I} _{s}^{*}=120{\sqrt {2}}\angle -2.09}
if :
V
=
M
v
∠
ϕ
v
{\displaystyle \mathbb {V} =M_{v}\angle \phi _{v}\quad }
, and
I
=
M
i
∠
ϕ
i
{\displaystyle \quad \mathbb {I} =M_{i}\angle \phi _{i}}
then
S
=
V
I
∗
=
M
v
M
i
2
∠
(
ϕ
v
−
ϕ
i
)
=
120
2
∗
599
2
∠
(
3.30
−
2.09
)
=
10
,
164
∠
1.21
=
3
,
586
+
9
,
510
j
{\displaystyle \mathbb {S} =\mathbb {V} \mathbb {I} ^{*}={\frac {M_{v}M_{i}}{2}}\angle (\phi _{v}-\phi _{i})={\frac {120{\sqrt {2}}*599}{2}}\angle (3.30-2.09)=10,164\angle 1.21=3,586+9,510j}
and
c
o
s
(
1.21
)
=
.357
{\displaystyle cos(1.21)=.357}
This is a bad power factor. Power factors below .9 will cause you a visit from the utility company or the transformer on the power pole might blow . The utility's apparent power is much larger than what the customer is willing to pay.
Value
Units
Description
10
,
164
{\displaystyle 10,164}
volt-ampere va
apparent power what utility companies manage: peak power they design for, peak power they have to deliver
.357
{\displaystyle .357}
unitless
power factor, ratio of real power to apparent power, ideally 1
3
,
590
{\displaystyle 3,590}
watt W
real, average, active power ... what consumers want to pay for (watt-hours)
9
,
510
{\displaystyle 9,510}
volt-amp-reactive var
reactive power ... why not all outlets in a room are on the same circuit breaker
Should be way to do phasor math in symbol form in mupad ... probably with matrices.