Definition 7.1:
Let
be a
-dimensional real vector space.
is called a Lie algebra iff it has a function
![{\displaystyle [\cdot ,\cdot ]:L\times L\to L}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65ed0dcd16a5bcb57a3b06e7321fb2a9b5ddcaed)
such that for all
and
the three rules
and
(bilinearity)
(skew-symmetry)
(Jacobi's identity)
hold.
Definition 7.3:
Let
be a manifold of class
. We define the vector field Lie bracket, denoted by
, as follows:
![{\displaystyle [\cdot ,\cdot ]:{\mathfrak {X}}(M)\times {\mathfrak {X}}(M)\to {\mathfrak {X}}(M),[\mathbf {V} ,\mathbf {W} ](p)(\varphi ):=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c0a1cad4e8d7ac44d9f7d6e81059e2de21f21af)
Theorem 6.4: If
are vector fields of class
on
, then
is a vector field of class
on
(i. e.
really maps to
)
Proof:
1. We show that for each
,
. Let
and
.
1.1 We prove linearity:
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,\mathbf {W} ]}(p)(\varphi +c\vartheta )&=\mathbf {V} (p)(\mathbf {W} (\varphi +c\vartheta ))-\mathbf {W} (p)(\mathbf {V} (\varphi +c\vartheta ))\\&=\mathbf {V} (p)(\mathbf {W} \varphi +c\mathbf {W} \vartheta )-\mathbf {W} (p)(\mathbf {V} \varphi +c\mathbf {V} \vartheta )\\&=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )+c(\mathbf {V} (p)(\mathbf {W} \vartheta )-\mathbf {W} (p)(\mathbf {V} \vartheta ))\\&=[\mathbf {V} ,\mathbf {W} ](p)(\varphi )+c[\mathbf {V} ,\mathbf {W} ](p)(\vartheta )\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/646d4d61a3421240fb6b14546af7f0f538d7fbdc)
1.2 We prove the product rule:
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,\mathbf {W} ]}(p)(\varphi \vartheta )&=\mathbf {V} (p)(\mathbf {W} (\varphi \vartheta ))-\mathbf {W} (p)(\mathbf {V} (\varphi \vartheta ))\\&=\mathbf {V} (p)(\varphi \mathbf {W} \vartheta +\vartheta \mathbf {W} \varphi )-\mathbf {W} (p)(\varphi \mathbf {V} \vartheta +\vartheta \mathbf {V} \varphi )\\&=\mathbf {V} (p)(\varphi \mathbf {W} \vartheta )+\mathbf {V} (p)(\vartheta \mathbf {W} \varphi )-\mathbf {W} (p)(\varphi \mathbf {V} \vartheta )-\mathbf {W} (p)(\vartheta \mathbf {V} \varphi )\\&=\varphi (p)\mathbf {V} (p)(\mathbf {W} \vartheta )+\overbrace {\mathbf {(} Y\vartheta )(p)} ^{=Y(p)(\vartheta )}\mathbf {V} (p)(\varphi )+\vartheta (p)\mathbf {V} (p)(\mathbf {W} \varphi )+\overbrace {\mathbf {(} Y\varphi )(p)} ^{=Y(p)(\varphi )}\mathbf {V} (p)(\vartheta )\\&~~~~-\varphi (p)\mathbf {W} (p)(\mathbf {V} \vartheta )-\overbrace {\mathbf {(} X\vartheta )(p)} ^{=X(p)(\vartheta )}\mathbf {W} (p)(\varphi )-\vartheta (p)\mathbf {W} (p)(\mathbf {V} \varphi )-\overbrace {\mathbf {(} X\varphi )(p)} ^{=X(p)(\varphi )}\mathbf {W} (p)(\vartheta )\\&=\varphi (p)\mathbf {V} (p)(\mathbf {W} \vartheta )-\varphi (p)\mathbf {W} (p)(\mathbf {V} \vartheta )+\vartheta (p)\mathbf {V} (p)(\mathbf {W} \varphi )-\vartheta (p)\mathbf {W} (p)(\mathbf {V} \varphi )\\&=\varphi (p)[\mathbf {V} ,\mathbf {W} ](p)(\vartheta )+\vartheta (p)[\mathbf {V} ,\mathbf {W} ](p)(\varphi )\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1cf5af860ab89b081ad4ad4e950cf527db80b6e9)
2. We show that
is differentiable of class
.
Let
be arbitrary. As
are vector fields of class
,
and
are contained in
. But since
are vector fields of class
,
and
are contained in
. But the sum of two differentiable functions is again differentiable (this is what theorem 2.? says), and thus
is in
, and since
was arbitrary,
is differentiable of class
.
Theorem 6.5:
If
is a manifold, and
is the vector field Lie bracket, then
and
form a Lie algebra together.
Proof:
1. First we note that
as defined in definition 5.? is a vector space (this was covered by exercise 5.?).
2. Second, we prove that for the vector Lie bracket, the three calculation rules of definition 6.1 are satisfied. Let
and
.
2.1 We prove bilinearity. For all
and
, we have
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,\mathbf {W} +c\mathbf {U} ]}(p)(\varphi )&=\mathbf {V} (p)((\mathbf {W} +c\mathbf {U} )\varphi )-(\mathbf {W} +c\mathbf {U} )(p)(\mathbf {V} \varphi )\\&=\mathbf {V} (p)(\mathbf {W} \varphi +c\mathbf {U} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )-c\mathbf {U} (p)(\mathbf {V} \varphi )\\&=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )+c\mathbf {V} (p)(\mathbf {U} \varphi )-c\mathbf {U} (p)(\mathbf {V} \varphi )\\&=[\mathbf {V} ,\mathbf {W} ](p)(\varphi )+c[\mathbf {V} ,\mathbf {U} ](p)(\varphi )\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42a62381b287abbc3f647290a9bca8a4cfd1e8b0)
and hence, since
and
were arbitrary,
![{\displaystyle [\mathbf {V} ,\mathbf {W} +c\mathbf {U} ]=[\mathbf {V} ,\mathbf {W} ]+c[\mathbf {V} ,\mathbf {U} ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6d251cc931149bdd8a168a939a174858cbe2f09)
Analogously (see exercise 1), it can be proven that
![{\displaystyle [\mathbf {V} +c\mathbf {W} ,\mathbf {U} ]=[\mathbf {V} ,\mathbf {U} ]+c[\mathbf {W} ,\mathbf {U} ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2daafcb0712d4ec407948a6e69d109bb120af9e2)
2.2 We prove skew-symmetry. We have for all
and
:
(\varphi )=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )=-(\mathbf {W} (p)(\mathbf {V} \varphi )-\mathbf {V} (p)(\mathbf {W} \varphi ))=-[\mathbf {W} ,\mathbf {V} ](p)(\varphi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8a8dde36f29d7a13feccdb82ab75697437f5ff)
2.3 We prove Jacobi's identity. We have for all
and
:
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,[\mathbf {W} ,\mathbf {U} ]]}(p)(\varphi )+[\mathbf {U} ,[\mathbf {V} ,\mathbf {W} ]](p)(\varphi )+[\mathbf {W} ,[\mathbf {U} ,\mathbf {V} ]](p)(\varphi )&=\mathbf {V} (p)([\mathbf {W} ,\mathbf {U} ]\varphi )-[\mathbf {W} ,\mathbf {U} ](p)(\mathbf {V} \varphi )\\&~~~~+\mathbf {U} (p)([\mathbf {V} ,\mathbf {W} ]\varphi )-[\mathbf {V} ,\mathbf {W} ](p)(\mathbf {U} \varphi )\\&~~~~+\mathbf {W} (p)([\mathbf {U} ,\mathbf {V} ]\varphi )-[\mathbf {U} ,\mathbf {V} ](p)(\mathbf {W} \varphi )\\&=\mathbf {V} (p)(\mathbf {W} (\mathbf {U} \varphi )-\mathbf {U} (\mathbf {W} \varphi ))-\mathbf {W} (p)(\mathbf {U} (\mathbf {V} \varphi ))+\mathbf {U} (p)(\mathbf {W} (\mathbf {V} \varphi ))\\&~~~~+\mathbf {U} (p)(\mathbf {V} (\mathbf {W} \varphi )-\mathbf {W} (\mathbf {V} \varphi ))-\mathbf {V} (p)(\mathbf {W} (\mathbf {U} \varphi ))+\mathbf {W} (p)(\mathbf {V} (\mathbf {U} \varphi ))\\&~~~~+\mathbf {W} (p)(\mathbf {U} (\mathbf {V} \varphi )-\mathbf {V} (\mathbf {U} \varphi ))-\mathbf {U} (p)(\mathbf {V} (\mathbf {W} \varphi ))+\mathbf {V} (p)(\mathbf {U} (\mathbf {W} \varphi ))\\&=0\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4f1aa3daa878ce7bb96e90f0f6a839de2f11f94)
, where the last equality follows from the linearity of
and
.