Digital Signal Processing/Fast Fourier Transform (FFT) Algorithm
The Fourier Transform (FFT) is an algorithm used to calculate a Discrete Fourier Transform (DFT) using a smaller number of multiplications.
Cooley–Tukey algorithm
[edit | edit source]The Cooley–Tukey algorithm is the most common fast Fourier transform (FFT) algorithm. It breaks down a larger DFT into smaller DFTs. The best known use of the Cooley–Tukey algorithm is to divide a N point transform into two N/2 point transforms, and is therefore limited to power-of-two sizes.
The algorithm can be implemented in two different ways, using the so-called:
- Decimation In Time (DIT)
- Decimation In Frequency (DIF)
Circuit diagram
[edit | edit source]The following picture represents a 16-point DIF FFT circuit diagram:
In the picture, the coefficients are given by:
where N is the number of points of the FFT. They are evenly spaced on the lower half of the unit circle and .
Test script
[edit | edit source]The following python script allows to test the algorithm illustrated above:
#!/usr/bin/python3
import math
import cmath
# ------------------------------------------------------------------------------
# Parameters
#
coefficientBitNb = 8 # 0 for working with reals
# ------------------------------------------------------------------------------
# Functions
#
# ..............................................................................
def bit_reversed(n, bit_nb):
binary_number = bin(n)
reverse_binary_number = binary_number[-1:1:-1]
reverse_binary_number = reverse_binary_number + \
(bit_nb - len(reverse_binary_number))*'0'
reverse_number = int(reverse_binary_number, bit_nb-1)
return(reverse_number)
# ..............................................................................
def fft(x):
j = complex(0, 1)
# sizes
point_nb = len(x)
stage_nb = int(math.log2(point_nb))
# vectors
stored = x.copy()
for index in range(point_nb):
stored[index] = complex(stored[index], 0)
calculated = [complex(0, 0)] * point_nb
# coefficients
coefficients = [complex(0, 0)] * (point_nb//2)
for index in range(len(coefficients)):
coefficients[index] = cmath.exp(-j * index/point_nb * 2*cmath.pi)
coefficients[index] = coefficients[index] * 2**coefficientBitNb
# loop
for stage_index in range(stage_nb):
# print([stored[i].real for i in range(point_nb)])
index_offset = 2**(stage_nb-stage_index-1)
# butterfly additions
for vector_index in range(point_nb):
isEven = (vector_index // index_offset) % 2 == 0
if isEven:
operand_a = stored[vector_index]
operand_b = stored[vector_index + index_offset]
else:
operand_a = - stored[vector_index]
operand_b = stored[vector_index - index_offset]
calculated[vector_index] = operand_a + operand_b
# coefficient multiplications
for vector_index in range(point_nb):
isEven = (vector_index // index_offset) % 2 == 0
if not isEven:
coefficient_index = (vector_index % index_offset) \
* (stage_index+1)
# print( \
# "(%d, %d) -> %d" \
# % (stage_index, vector_index, coefficient_index) \
# )
calculated[vector_index] = \
coefficients[coefficient_index] * calculated[vector_index] \
/ 2**coefficientBitNb
if coefficientBitNb > 0:
calculated[vector_index] = complex( \
math.floor(calculated[vector_index].real), \
math.floor(calculated[vector_index].imag) \
)
# storage
stored = calculated.copy()
# reorder results
for index in range(point_nb):
calculated[bit_reversed(index, stage_nb)] = stored[index]
return calculated
# ------------------------------------------------------------------------------
# Main program
#
source = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
transformed = fft(source)
amplitude = [0.0] * len(source)
amplitude_print = ''
for index in range(len(transformed)):
amplitude[index] = abs(transformed[index])
amplitude_print = amplitude_print + "%5.3f " % amplitude[index]
print()
print(amplitude_print)
It has a special parameter, coefficientBitNb
, which allows to determine the calculation results
for a circuit using only integer numbers.