Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Appearance
Donations
Create account
Log in
Personal tools
Donations
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
Contents
move to sidebar
hide
Beginning
1
Z Transform Properties
2
Z Transform Table
Toggle the table of contents
Electronics Communication/Signal Processing/Signal Transformation/Z Transform
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
Appearance
move to sidebar
hide
From Wikibooks, open books for an open world
<
Electronics Communication
|
Signal Processing
|
Signal Transformation
Z Transform Properties
[
edit
|
edit source
]
Time domain
Z-domain
ROC
Notation
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}}
X
(
z
)
=
Z
{
x
[
n
]
}
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}}
ROC:
r
2
<
|
z
|
<
r
1
{\displaystyle r_{2}<|z|<r_{1}\ }
Linearity
a
1
x
1
[
n
]
+
a
2
x
2
[
n
]
{\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]\ }
a
1
X
1
(
z
)
+
a
2
X
2
(
z
)
{\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)\ }
At least the intersection of ROC
1
and ROC
2
Time shifting
x
[
n
−
k
]
{\displaystyle x[n-k]\ }
z
−
k
X
(
z
)
{\displaystyle z^{-k}X(z)\ }
ROC, except
z
=
0
{\displaystyle z=0\ }
if
k
>
0
{\displaystyle k>0\,}
and
z
=
∞
{\displaystyle z=\infty }
if
k
<
0
{\displaystyle k<0\ }
Scaling in the z-domain
a
n
x
[
n
]
{\displaystyle a^{n}x[n]\ }
X
(
a
−
1
z
)
{\displaystyle X(a^{-1}z)\ }
|
a
|
r
2
<
|
z
|
<
|
a
|
r
1
{\displaystyle |a|r_{2}<|z|<|a|r_{1}\ }
Time reversal
x
[
−
n
]
{\displaystyle x[-n]\ }
X
(
z
−
1
)
{\displaystyle X(z^{-1})\ }
1
r
2
<
|
z
|
<
1
r
1
{\displaystyle {\frac {1}{r_{2}}}<|z|<{\frac {1}{r_{1}}}\ }
Conjugation
x
∗
[
n
]
{\displaystyle x^{*}[n]\ }
X
∗
(
z
∗
)
{\displaystyle X^{*}(z^{*})\ }
ROC
Real part
Re
{
x
[
n
]
}
{\displaystyle \operatorname {Re} \{x[n]\}\ }
1
2
[
X
(
z
)
+
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]}
ROC
Imaginary part
Im
{
x
[
n
]
}
{\displaystyle \operatorname {Im} \{x[n]\}\ }
1
2
j
[
X
(
z
)
−
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]}
ROC
Differentiation
n
x
[
n
]
{\displaystyle nx[n]\ }
−
z
d
X
(
z
)
d
z
{\displaystyle -z{\frac {\mathrm {d} X(z)}{\mathrm {d} z}}}
ROC
Convolution
x
1
[
n
]
∗
x
2
[
n
]
{\displaystyle x_{1}[n]*x_{2}[n]\ }
X
1
(
z
)
X
2
(
z
)
{\displaystyle X_{1}(z)X_{2}(z)\ }
At least the intersection of ROC
1
and ROC
2
Correlation
r
x
1
,
x
2
(
l
)
=
x
1
[
l
]
∗
x
2
[
−
l
]
{\displaystyle r_{x_{1},x_{2}}(l)=x_{1}[l]*x_{2}[-l]\ }
R
x
1
,
x
2
(
z
)
=
X
1
(
z
)
X
2
(
z
−
1
)
{\displaystyle R_{x_{1},x_{2}}(z)=X_{1}(z)X_{2}(z^{-1})\ }
At least the intersection of ROC of X
1
(z) and X
2
(
z
−
1
{\displaystyle z^{-1}}
)
Multiplication
x
1
[
n
]
x
2
[
n
]
{\displaystyle x_{1}[n]x_{2}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
(
z
v
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\frac {z}{v}})v^{-1}\mathrm {d} v\ }
At least
r
1
l
r
2
l
<
|
z
|
<
r
1
u
r
2
u
{\displaystyle r_{1l}r_{2l}<|z|<r_{1u}r_{2u}\ }
Parseval's relation
∑
∞
x
1
[
n
]
x
2
∗
[
n
]
{\displaystyle \sum ^{\infty }x_{1}[n]x_{2}^{*}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
∗
(
1
v
∗
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\frac {1}{v^{*}}})v^{-1}\mathrm {d} v\ }
Initial value theorem
x
[
0
]
=
lim
z
→
∞
X
(
z
)
{\displaystyle x[0]=\lim _{z\rightarrow \infty }X(z)\ }
, If
x
[
n
]
{\displaystyle x[n]\,}
causal
Final value theorem
x
[
∞
]
=
lim
z
→
1
(
z
−
1
)
X
(
z
)
{\displaystyle x[\infty ]=\lim _{z\rightarrow 1}(z-1)X(z)\ }
, Only if poles of
(
z
−
1
)
X
(
z
)
{\displaystyle (z-1)X(z)\ }
are inside unit circle
Z Transform Table
[
edit
|
edit source
]
Here:
u
[
n
]
=
1
{\displaystyle u[n]=1}
for
n
>=
0
{\displaystyle n>=0}
,
u
[
n
]
=
0
{\displaystyle u[n]=0}
for
n
<
0
{\displaystyle n<0}
δ
[
n
]
=
1
{\displaystyle \delta [n]=1}
for
n
=
0
{\displaystyle n=0}
,
δ
[
n
]
=
0
{\displaystyle \delta [n]=0}
otherwise
Signal,
x
[
n
]
{\displaystyle x[n]}
Z-transform,
X
(
z
)
{\displaystyle X(z)}
ROC
1
δ
[
n
]
{\displaystyle \delta [n]\,}
1
{\displaystyle 1\,}
all
z
{\displaystyle {\mbox{all }}z\,}
2
δ
[
n
−
n
0
]
{\displaystyle \delta [n-n_{0}]\,}
z
−
n
0
{\displaystyle z^{-n_{0}}\,}
z
≠
0
{\displaystyle z\neq 0\,}
3
u
[
n
]
{\displaystyle u[n]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
4
−
u
[
−
n
−
1
]
{\displaystyle -u[-n-1]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
5
n
u
[
n
]
{\displaystyle nu[n]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
6
−
n
u
[
−
n
−
1
]
{\displaystyle -nu[-n-1]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
7
n
2
u
[
n
]
{\displaystyle n^{2}u[n]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
8
−
n
2
u
[
−
n
−
1
]
{\displaystyle -n^{2}u[-n-1]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
9
n
3
u
[
n
]
{\displaystyle n^{3}u[n]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
10
−
n
3
u
[
−
n
−
1
]
{\displaystyle -n^{3}u[-n-1]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
11
a
n
u
[
n
]
{\displaystyle a^{n}u[n]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
12
−
a
n
u
[
−
n
−
1
]
{\displaystyle -a^{n}u[-n-1]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
13
n
a
n
u
[
n
]
{\displaystyle na^{n}u[n]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
14
−
n
a
n
u
[
−
n
−
1
]
{\displaystyle -na^{n}u[-n-1]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
15
n
2
a
n
u
[
n
]
{\displaystyle n^{2}a^{n}u[n]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
16
−
n
2
a
n
u
[
−
n
−
1
]
{\displaystyle -n^{2}a^{n}u[-n-1]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
17
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle \cos(\omega _{0}n)u[n]\,}
1
−
z
−
1
cos
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
18
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle \sin(\omega _{0}n)u[n]\,}
z
−
1
sin
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
19
a
n
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\cos(\omega _{0}n)u[n]\,}
1
−
a
z
−
1
cos
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
20
a
n
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\sin(\omega _{0}n)u[n]\,}
a
z
−
1
sin
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
Category
:
Book:Electronics Communication