From Wikibooks, open books for an open world
To say that

means that ƒ(x) can be made as close as desired to L by making x close enough, but not equal, to p.
The following definitions (known as (ε, δ)-definitions) are the generally accepted ones for the limit of a function in various contexts.

![{\displaystyle \lim _{x\to c}\,[f(x)\pm g(x)]=L_{1}\pm L_{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2cb00a9174f995bae626da947886d0229d14b275)
![{\displaystyle \lim _{x\to c}\,[f(x)g(x)]=L_{1}\times L_{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0d8693d558a7dfc0f5f0c5900a05dd950f6f7f1)



(L'Hôpital's rule)






![{\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e67d9f7e2588c9b3d418f1107e9ea27b8f330ed)
























![{\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{N}}={\begin{cases}1,&N>0\\0,&N=0\\{\text{does not exist}},&N<0\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61204dd0899445181689dd595b467af963c3150e)
![{\displaystyle \lim _{x\to \infty }{\sqrt[{N}]{x}}=\infty {\text{ for any }}N>0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3529665ba00830f3f5a8e5160afe35d422924f5)

