F Sharp Programming/Modules and Namespaces
F# : Modules and Namespaces |
Modules and Namespaces are primarily used for grouping and organizing code.
Defining Modules
[edit | edit source]No code is required to define a module. If a codefile does not contain a leading namespace
or module
declaration, F# code will implicitly place the code in a module, where the name of the module is the same as the file name with the first letter capitalized.
To access code in another module, simply use .
notation: moduleName.member
. Notice that this notation is similar to the syntax used to access static members—this is not a coincidence. F# modules are compiled as classes which only contain static members, values, and type definitions.
Let's create two files:
DataStructures.fs
type 'a Stack =
| EmptyStack
| StackNode of 'a * 'a Stack
let rec getRange startNum endNum =
if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1) endNum)
Program.fs
let x =
DataStructures.StackNode(1,
DataStructures.StackNode(2,
DataStructures.StackNode(3, DataStructures.EmptyStack)))
let y = DataStructures.getRange 5 10
printfn "%A" x
printfn "%A" y
This program outputs:
StackNode (1,StackNode (2,StackNode (3,EmptyStack))) StackNode (5, StackNode (6,StackNode (7,StackNode (8,StackNode (9,StackNode (10,EmptyStack))))))
- Note: Remember, order of compilation matters in F#. Dependencies must come before dependents, so
DataStructures.fs
comes beforeProgram.fs
when compiling this program.
Like all modules, we can use the open
keyword to give us access to the methods inside a module without fully qualifying the naming of the method. This allows us to revise Program.fs
as follows:
open DataStructures
let x = StackNode(1, StackNode(2, StackNode(3, EmptyStack)))
let y = getRange 5 10
printfn "%A" x
printfn "%A" y
Submodules
[edit | edit source]Its very easy to create submodules using the module
keyword:
(* DataStructures.fs *)
type 'a Stack =
| EmptyStack
| StackNode of 'a * 'a Stack
module StackOps =
let rec getRange startNum endNum =
if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1) endNum)
Since the getRange
method is under another module, the fully qualified name of this method is DataStructures.StackOps.getRange
. We can use it as follows:
(* Program.fs *)
open DataStructures
let x =
StackNode(1, StackNode(2, StackNode(3, EmptyStack)))
let y = StackOps.getRange 5 10
printfn "%A" x
printfn "%A" y
F# allows us to create a module and a type having the same name, for example the following code is perfectly acceptable:
type 'a Stack =
| EmptyStack
| StackNode of 'a * 'a Stack
module Stack =
let rec getRange startNum endNum =
if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1) endNum)
- Note: Its possible to nest submodules inside other submodules. However, as a general principle, its best to avoid creating complex module hierarchies. Functional programming libraries tend to be very "flat" with nearly all functionality accessible in the first 2 or 3 levels of a hierarchy. This is in contrast to many other OO languages which encourage programmers to create deeply nested class libraries, where functionality might be buried 8 or 10 levels down the hierarchy.
Extending Types and Modules
[edit | edit source]F# supports extension methods, which allow programmers to add new static and instance methods to classes and modules without inheriting from them.
Extending a Module
The Seq
module contains several pairs of methods:
iter
/iteri
map
/mapi
Seq
has a forall
member, but does not have a corresponding foralli
function, which includes the index of each sequence element. We add this missing method to the module simply by creating another module with the same name. For example, using fsi:
> module Seq =
let foralli f s =
s
|> Seq.mapi (fun i x -> i, x) (* pair item with its index *)
|> Seq.forall (fun (i, x) -> f i x) (* apply item and index to function *)
let isPalindrome (input : string) =
input
|> Seq.take (input.Length / 2)
|> Seq.foralli (fun i x -> x = input.[input.Length - i - 1]);;
module Seq = begin
val foralli : (int -> 'a -> bool) -> seq<'a> -> bool
end
val isPalindrome : string -> bool
> isPalindrome "hello";;
val it : bool = false
> isPalindrome "racecar";;
val it : bool = true
Extending a Type
The System.String
has many useful methods, but let's say we thought it was missing a few important functions, Reverse
and IsPalindrome
. Since this class is marked as sealed
or NotInheritable
, we can't create a derived version of this class. Instead, we create a module with the new methods we want. Here's an example in fsi which demonstrates how to add new static and instance methods to the String
class:
> module Seq =
let foralli f s =
s
|> Seq.mapi (fun i x -> i, x) (* pair item with its index *)
|> Seq.forall (fun (i, x) -> f i x) (* apply item and index to function *)
module StringExtensions =
type System.String with
member this.IsPalindrome =
this
|> Seq.take (this.Length / 2)
|> Seq.foralli (fun i x -> this.[this.Length - i - 1] = x)
static member Reverse(s : string) =
let chars : char array =
let temp = Array.zeroCreate s.Length
let charsToTake = if temp.Length % 2 <> 0 then (temp.Length + 1) / 2 else temp.Length / 2
s
|> Seq.take charsToTake
|> Seq.iteri (fun i x ->
temp.[i] <- s.[temp.Length - i - 1]
temp.[temp.Length - i - 1] <- x)
temp
new System.String(chars)
open StringExtensions;;
module Seq = begin
val foralli : (int -> 'a -> bool) -> seq<'a> -> bool
end
module StringExtensions = begin
end
> "hello world".IsPalindrome;;
val it : bool = false
> System.String.Reverse("hello world");;
val it : System.String = "dlrow olleh"
Module Signatures
[edit | edit source]By default, all members in a module are accessible from outside the module. However, a module often contain members which should not be accessible outside itself, such as helper functions. One way to expose only a subset of a module's members is by creating a signature file for that module. (Another way is to apply .Net CLR access modifiers of public, internal, or private to individual declarations).
Signature files have the same name as their corresponding module, but end with a ".fsi" extension (f-sharp interface). Signature files always come before their implementation files, which have a corresponding ".fs" extension. For example:
DataStructures.fsi
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
val getRange : int -> int -> int stack
val hd : 'a stack -> 'a
val tl : 'a stack -> 'a stack
val fold : ('a -> 'b -> 'a) -> 'a -> 'b stack -> 'a
val reduce : ('a -> 'a -> 'a) -> 'a stack -> 'a
DataStructures.fs
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
(* helper functions *)
let internal_head_tail = function
| EmptyStack -> failwith "Empty stack"
| StackNode(hd, tail) -> hd, tail
let rec internal_fold_left f acc = function
| EmptyStack -> acc
| StackNode(hd, tail) -> internal_fold_left f (f acc hd) tail
(* public functions *)
let rec getRange startNum endNum =
if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1) endNum)
let hd s = internal_head_tail s |> fst
let tl s = internal_head_tail s |> snd
let fold f seed stack = internal_fold_left f seed stack
let reduce f stack = internal_fold_left f (hd stack) (tl stack)
Program.fs
open DataStructures
let x = Stack.getRange 1 10
printfn "%A" (Stack.hd x)
printfn "%A" (Stack.tl x)
printfn "%A" (Stack.fold ( * ) 1 x)
printfn "%A" (Stack.reduce ( + ) x)
(* printfn "%A" (Stack.internal_head_tail x) *) (* will not compile *)
Since Stack.internal_head_tail
is not defined in our interface file, the method is marked private
and no longer accessible outside of the DataStructures
module.
Module signatures are useful to building a code library's skeleton, however they have a few caveats. If you want to expose a class, record, or union in a module through a signature, then the signature file must expose all of the objects members, records fields, and union's cases. Additionally, the signature of the function defined in the module and it's corresponding signature in the signature file must match exactly. Unlike OCaml, F# does not allow a function in a module with the generic type 'a -> 'a -> 'a
to be restricted to int -> int -> int
in the signature file.
Defining Namespaces
[edit | edit source]A namespace is a hierarchical categorization of modules, classes, and other namespaces. For example, the System.Collections
namespace groups together all of the collections and data structures in the .NET BCL, whereas the System.Security.Cryptography
namespace groups together all classes which provide cryptographic services.
Namespaces are primarily used to avoid name conflicts. For example, let's say we were writing an application incorporated code from several different vendors. If Vendor A and Vendor B both have a class called Collections.Stack
, and we wrote the code let s = new Stack()
, how would the compiler know whether which stack we intended to create? Namespaces can eliminate this ambiguity by adding one more layer of grouping to our code.
Code is grouped under a namespace using the namespace
keyword:
DataStructures.fsi
namespace Princess.Collections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
val getRange : int -> int -> int stack
val hd : 'a stack -> 'a
val tl : 'a stack -> 'a stack
val fold : ('a -> 'b -> 'a) -> 'a -> 'b stack -> 'a
val reduce : ('a -> 'a -> 'a) -> 'a stack -> 'a
DataStructures.fs
namespace Princess.Collections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
(* helper functions *)
let internal_head_tail = function
| EmptyStack -> failwith "Empty stack"
| StackNode(hd, tail) -> hd, tail
let rec internal_fold_left f acc = function
| EmptyStack -> acc
| StackNode(hd, tail) -> internal_fold_left f (f acc hd) tail
(* public functions *)
let rec getRange startNum endNum =
if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1) endNum)
let hd s = internal_head_tail s |> fst
let tl s = internal_head_tail s |> snd
let fold f seed stack = internal_fold_left f seed stack
let reduce f stack = internal_fold_left f (hd stack) (tl stack)
Program.fs
open Princess.Collections
let x = Stack.getRange 1 10
printfn "%A" (Stack.hd x)
printfn "%A" (Stack.tl x)
printfn "%A" (Stack.fold ( * ) 1 x)
printfn "%A" (Stack.reduce ( + ) x)
Where is the DataStructures
Module?
You may have expected the code in Program.fs
above to open Princess.Collections.DataStructures
rather than Princess.Collections
. According to the F# spec, F# treats anonymous implementation files (which are files without a leading module
or namespace
declaration) by putting all code in an implicit module which matches the code's filename. Since we have a leading namespace
declaration, F# does not create the implicit module.
.NET does not permit users to create functions or values outside of classes or modules. As a consequence, we cannot write the following code:
namespace Princess.Collections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
let somefunction() = 12 (* <--- functions not allowed outside modules *)
(* ... *)
If we prefer to have a module called DataStructures
, we can write this:
namespace Princess.Collections
module DataStructures
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
let somefunction() = 12
(* ... *)
Or equivalently, we define a module and place it a namespace simultaneously using:
module Princess.Collections.DataStructures
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
let somefunction() = 12
(* ... *)
Adding to Namespace from Multiple Files
[edit | edit source]Unlike modules and classes, any file can contribute to a namespace. For example:
DataStructures.fs
namespace Princess.Collections
type 'a stack =
| EmptyStack
| StackNode of 'a * 'a stack
module Stack =
(* helper functions *)
let internal_head_tail = function
| EmptyStack -> failwith "Empty stack"
| StackNode(hd, tail) -> hd, tail
let rec internal_fold_left f acc = function
| EmptyStack -> acc
| StackNode(hd, tail) -> internal_fold_left f (f acc hd) tail
(* public functions *)
let rec getRange startNum endNum =
if startNum > endNum then EmptyStack
else StackNode(startNum, getRange (startNum+1) endNum)
let hd s = internal_head_tail s |> fst
let tl s = internal_head_tail s |> snd
let fold f seed stack = internal_fold_left f seed stack
let reduce f stack = internal_fold_left f (hd stack) (tl stack)
MoreDataStructures.fs
namespace Princess.Collections
type 'a tree when 'a :> System.IComparable<'a> =
| EmptyTree
| TreeNode of 'a * 'a tree * 'a tree
module Tree =
let rec insert (x : #System.IComparable<'a>) = function
| EmptyTree -> TreeNode(x, EmptyTree, EmptyTree)
| TreeNode(y, l, r) as node ->
match x.CompareTo(y) with
| 0 -> node
| 1 -> TreeNode(y, l, insert x r)
| -1 -> TreeNode(y, insert x l, r)
| _ -> failwith "CompareTo returned illegal value"
Since we have a leading namespace declaration in both files, F# does not create any implicit modules. The 'a stack
, 'a tree
, Stack
, and Tree
types are all accessible through the Princess.Collections
namespace:
Program.fs
open Princess.Collections
let x = Stack.getRange 1 10
let y =
let rnd = new System.Random()
[ for a in 1 .. 10 -> rnd.Next(0, 100) ]
|> Seq.fold (fun acc x -> Tree.insert x acc) EmptyTree
printfn "%A" (Stack.hd x)
printfn "%A" (Stack.tl x)
printfn "%A" (Stack.fold ( * ) 1 x)
printfn "%A" (Stack.reduce ( + ) x)
printfn "%A" y
Controlling Class and Module Accessibility
[edit | edit source]Unlike modules, there is no equivalent to a signature file for namespaces. Instead, the visibility of classes and submodules is controlled through standard accessibility modifiers:
namespace Princess.Collections
type 'a tree when 'a :> System.IComparable<'a> =
| EmptyTree
| TreeNode of 'a * 'a tree * 'a tree
(* InvisibleModule is only accessible by classes or
modules inside the Princess.Collections namespace*)
module private InvisibleModule =
let msg = "I'm invisible!"
module Tree =
(* InvisibleClass is only accessible by methods
inside the Tree module *)
type private InvisibleClass() =
member x.Msg() = "I'm invisible too!"
let rec insert (x : #System.IComparable<'a>) = function
| EmptyTree -> TreeNode(x, EmptyTree, EmptyTree)
| TreeNode(y, l, r) as node ->
match x.CompareTo(y) with
| 0 -> node
| 1 -> TreeNode(y, l, insert x r)
| -1 -> TreeNode(y, insert x l, r)
| _ -> failwith "CompareTo returned illegal value"