If z is replaced by the negative reciprocal of its complex conjugate,
then the functions g1, g2, and g3 of z are left unchanged.
Let g1′ be obtained from g1 by substituting z with
Then we obtain

Multiply both numerator and denominator by

Multiply both numerator and denominator by -1,

It is generally true for any complex number z and any integral power n that

therefore


therefore
since, for any complex number z,

Let g2′ be obtained from g2 by substituting z with
Then we obtain




therefore
since, for any complex number z,

Let g3′ be obtained from g3 by substituting z with
Then we obtain




therefore
Q.E.D.
Boy's surface has 3-fold symmetry. This means that it has an axis of discrete rotational symmetry: any 120° turn about this axis will leave the surface looking exactly the same. The Boy's surface can be cut into three mutually congruent pieces.
Two complex-algebraic identities will be used in this proof: let U and V be complex numbers, then


Given a point P(z) on the Boy's surface with complex parameter z inside the unit disk in the complex plane, we will show that rotating the parameter z 120° about the origin of the complex plane is equivalent to rotating the Boy's surface 120° about the Z-axis (still using R. Bryant's parametric equations given above).
Let

be the rotation of parameter z. Then the "raw" (unscaled) coordinates g1, g2, and g3 will be converted, respectively, to g′1, g′2, and g′3.
Substitute z′ for z in g3(z), resulting in


Since
it follows that

therefore
This means that the axis of rotational symmetry will be parallel to the Z-axis.
Plug in z′ for z in g1(z), resulting in

Noticing that

Then, letting
in the denominator yields

Now, applying the complex-algebraic identity, and letting

we get
![{\displaystyle g_{1}'=-{3 \over 2}\left[\mathrm {Im} (z'')\mathrm {Re} (e^{i2\pi /3}-z^{4}e^{-i2\pi /3})+\mathrm {Re} (z'')\mathrm {Im} (e^{i2\pi /3}-z^{4}e^{-i2\pi /3})\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64ddc457f89de8d2e3b4f3c4e8689ad8559447f0)
Both
and
are distributive with respect to addition, and


due to Euler's formula, so that
![{\displaystyle g_{1}'=-{3 \over 2}\left[\mathrm {Im} (z'')\left(\cos {2\pi \over 3}-\mathrm {Re} (z^{4}e^{-i2\pi /3})\right)+\mathrm {Re} (z'')\left(\sin {2\pi \over 3}-\mathrm {Im} (z^{4}e^{-i2\pi /3})\right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a75caf9d08222ef7db660ad6a3af1ffb1b19b87a)
Applying the complex-algebraic identities again, and simplifying
to -1/2 and
to
produces
![{\displaystyle g_{1}'=-{3 \over 2}\left[\mathrm {Im} (z'')\left(-{1 \over 2}-[\mathrm {Re} (z^{4})\mathrm {Re} (e^{-i2\pi /3})-\mathrm {Im} (z^{4})\mathrm {Im} (e^{-i2\pi /3})]\right)+\mathrm {Re} (z'')\left({{\sqrt {3}} \over 2}-[\mathrm {Im} (z^{4})\mathrm {Re} (e^{-i2\pi /3})+\mathrm {Re} (z^{4})\mathrm {Im} (e^{-i2\pi /3})]\right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e094e3684fdafbf02d71b5b2f364ae7c33e0a366)
Simplify constants,
![{\displaystyle g_{1}'=-{3 \over 2}\left[\mathrm {Im} (z'')\left(-{1 \over 2}-\left[-{1 \over 2}\mathrm {Re} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Im} (z^{4})\right]\right)+\mathrm {Re} (z'')\left({{\sqrt {3}} \over 2}-\left[-{1 \over 2}\mathrm {Im} (z^{4})-{{\sqrt {3}} \over 2}\mathrm {Re} (z^{4})\right]\right)\right],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/45f95262c48e5b4d8e1fb9295929a3b588ea39d4)
therefore
![{\displaystyle g_{1}'=-{3 \over 2}\left[-{1 \over 2}\mathrm {Im} (z'')+{1 \over 2}\mathrm {Im} (z'')\mathrm {Re} (z^{4})-{{\sqrt {3}} \over 2}\mathrm {Im} (z'')\mathrm {Im} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Re} (z'')+{1 \over 2}\mathrm {Re} (z'')\mathrm {Im} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Re} (z'')\mathrm {Re} (z^{4})\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bb49fb22814d6e3c4c6c64fd35e121a80b0a522)
Applying the complex-algebraic identity to the original g1 yields
![{\displaystyle g_{1}=-{3 \over 2}[\mathrm {Im} (z'')\mathrm {Re} (1-z^{4})+\mathrm {Re} (z'')\mathrm {Im} (1-z^{4})],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80133e0ee3eb4dc621ad7e9434f01f83581072a3)
![{\displaystyle g_{1}=-{3 \over 2}[\mathrm {Im} (z'')(1-\mathrm {Re} (z^{4}))+\mathrm {Re} (z'')(-\mathrm {Im} (z^{4}))],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/73689f32857bd77ded3a212b8be1a94190b0040c)
![{\displaystyle g_{1}=-{3 \over 2}[\mathrm {Im} (z'')-\mathrm {Im} (z'')\mathrm {Re} (z^{4})-\mathrm {Re} (z'')\mathrm {Im} (z^{4})].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7423974f8904a20568735abce4701dd63b536d2f)
Plug in z′ for z in g2(z), resulting in

Simplify the exponents,

Now apply the complex-algebraic identity to g′2, obtaining
![{\displaystyle g_{2}'=-{3 \over 2}\left[\mathrm {Re} (z'')\mathrm {Re} (e^{i2\pi /3}+z^{4}e^{-i2\pi /3})-\mathrm {Im} (z'')\mathrm {Im} (e^{i2\pi /3}+z^{4}e^{-i2\pi /3})\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/790a2a00eda67d18ad2d98bc277d2a757c36e033)
Distribute the
with respect to addition, and simplify constants,
![{\displaystyle g_{2}'=-{3 \over 2}\left[\mathrm {Re} (z'')\left(-{1 \over 2}+\mathrm {Re} (z^{4}e^{-i2\pi /3})\right)-\mathrm {Im} (z'')\left({{\sqrt {3}} \over 2}+\mathrm {Im} (z^{4}e^{-i2\pi /3})\right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/60a5f940997fe5e36745ddea82f9832e2554b442)
Apply the complex-algebraic identities again,
![{\displaystyle g_{2}'=-{3 \over 2}\left[\mathrm {Re} (z'')\left(-{1 \over 2}+\mathrm {Re} (z^{4})\mathrm {Re} (e^{-i2\pi /3})-\mathrm {Im} (z^{4})\mathrm {Im} (e^{-i2\pi \over 3})\right)-\mathrm {Im} (z'')\left({{\sqrt {3}} \over 2}+\mathrm {Im} (z^{4})\mathrm {Re} (e^{-i2\pi /3})+\mathrm {Re} (z^{4})\mathrm {Im} (e^{-i2\pi /3})\right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0191d31b2f4d8d75df6b8761cb5a8df325573790)
Simplify constants,
![{\displaystyle g_{2}'=-{3 \over 2}\left[\mathrm {Re} (z'')\left(-{1 \over 2}-{1 \over 2}\mathrm {Re} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Im} (z^{4})\right)-\mathrm {Im} (z'')\left({{\sqrt {3}} \over 2}-{{\sqrt {3}} \over 2}\mathrm {Re} (z^{4})-{1 \over 2}\mathrm {Im} (z^{4})\right)\right],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d610a8f9a991a5eb81e6a533b4d5780468c9020)
then distribute with respect to addition,
![{\displaystyle g_{2}'=-{3 \over 2}\left[-{1 \over 2}\mathrm {Re} (z'')-{1 \over 2}\mathrm {Re} (z'')\mathrm {Re} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Re} (z'')\mathrm {Im} (z^{4})-{{\sqrt {3}} \over 2}\mathrm {Im} (z'')+{{\sqrt {3}} \over 2}\mathrm {Im} (z'')\mathrm {Re} (z^{4})+{1 \over 2}\mathrm {Im} (z'')\mathrm {Im} (z^{4})\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09aaa064f48fafb2a654719b612c32c7efbc703e)
Applying the complex-algebraic identity to the original g2 yields

![{\displaystyle g_{2}=-{3 \over 2}\left[\mathrm {Re} (z'')(1+\mathrm {Re} (z^{4}))-\mathrm {Im} (z'')\mathrm {Im} (z^{4})\right],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bdda93c035e68eba4f3ea2503902bd5ee6c7e834)
![{\displaystyle g_{2}=-{3 \over 2}\left[\mathrm {Re} (z'')+\mathrm {Re} (z'')\mathrm {Re} (z^{4})-\mathrm {Im} (z'')\mathrm {Im} (z^{4})\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/033f29ec3e1b149ccd89cd079c358d3f04a526d4)
The raw coordinates of the pre-rotated point are
![{\displaystyle g_{1}=-{3 \over 2}[\mathrm {Im} (z'')-\mathrm {Im} (z'')\mathrm {Re} (z^{4})-\mathrm {Re} (z'')\mathrm {Im} (z^{4})],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44cd0e094efe85729029ac422b4407a9d020d198)
![{\displaystyle g_{2}=-{3 \over 2}\left[\mathrm {Re} (z'')+\mathrm {Re} (z'')\mathrm {Re} (z^{4})-\mathrm {Im} (z'')\mathrm {Im} (z^{4})\right],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8135e27fd4cc4004c2840f97cbcebf150e9f687)
and the raw coordinates of the post-rotated point are
![{\displaystyle g_{1}'=-{3 \over 2}\left[-{1 \over 2}\mathrm {Im} (z'')+{1 \over 2}\mathrm {Im} (z'')\mathrm {Re} (z^{4})-{{\sqrt {3}} \over 2}\mathrm {Im} (z'')\mathrm {Im} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Re} (z'')+{1 \over 2}\mathrm {Re} (z'')\mathrm {Im} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Re} (z'')\mathrm {Re} (z^{4})\right],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/673939576e991f607d5df49b1a9a5f39d940404b)
![{\displaystyle g_{2}'=-{3 \over 2}\left[-{1 \over 2}\mathrm {Re} (z'')-{1 \over 2}\mathrm {Re} (z'')\mathrm {Re} (z^{4})+{{\sqrt {3}} \over 2}\mathrm {Re} (z'')\mathrm {Im} (z^{4})-{{\sqrt {3}} \over 2}\mathrm {Im} (z'')+{{\sqrt {3}} \over 2}\mathrm {Im} (z'')\mathrm {Re} (z^{4})+{1 \over 2}\mathrm {Im} (z'')\mathrm {Im} (z^{4})\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09aaa064f48fafb2a654719b612c32c7efbc703e)
Comparing these four coordinates we can verify that


In matrix form, this can be expressed as

Therefore rotating z by 120° to z′ on the complex plane is equivalent to rotating P(z) by -120° about the Z-axis to P(z′). This means that the Boy's surface has 3-fold symmetry, quod erat demonstrandum.