The mathematical constant
is a transcendental number (or inalgebraic).
In other words, it is not a root of any polynomial with rational coefficients.
Without loss of generality, it is sufficient to prove the claim for a polynomial with integer coefficients.
Let us assume that
is algebraic, so there exists a polynomial
![{\displaystyle P(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdots +a_{n}x^{n}\in \mathbb {Z} [x]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d698e8a0d104d6b3c5d3efacd0650d8a492fc27)
such that
.
Let
be a polynomial of degree
. Let us define
. Taking its derivative yields:

Let us define
. Taking its derivative yields:
![{\displaystyle G'\!(x)={\text{e}}^{-x}F'\!(x)-{\text{e}}^{-x}F(x)={\text{e}}^{-x}{\bigl [}F'\!(x)-F(x){\bigr ]}=-e^{-x}f(x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2749ad664f9cf836b15f9e594fd28577a4db577c)
By the fundamental theorem of calculus, we get:

Now let:
![{\displaystyle {\begin{aligned}F(m)-{\text{e}}^{m}F(0)=-\!\int \limits _{0}^{m}\!{\text{e}}^{m-t}f(t)dt=A_{m}\\[5pt]a_{m}F(m)-a_{m}{\text{e}}^{m}F(0)=a_{m}A_{m}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2fd647011dfc86e060c67d07dcd31f2fd02ead40)
Summing all the terms yields
![{\displaystyle {\begin{aligned}\sum _{m\,=\,1}^{n}a_{m}F(m)-\sum _{m\,=\,1}^{n}a_{m}{\text{e}}^{m}F(0)=\sum _{m\,=\,1}^{n}a_{m}A_{m}\\[5pt]\sum _{m\,=\,1}^{n}a_{m}F(m)-F(0)\sum _{m\,=\,1}^{n}a_{m}{\text{e}}^{m}=\sum _{m\,=\,1}^{n}a_{m}A_{m}\\[5pt]\sum _{m\,=\,1}^{n}a_{m}F(m)-F(0)(-a_{0})=\sum _{m\,=\,1}^{n}a_{m}A_{m}\\[5pt]\sum _{m\,=\,0}^{n}a_{m}F(m)=\sum _{m\,=\,1}^{n}a_{m}A_{m}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c85309857a2b23085000d7b2f115c0685e2da481)
Lemma: Let
be a polynomial with a root
of multiplicity
. Then
for all
.
Proof: By strong induction.
Let us write
, with
a polynomial such that
.
For
we get:

Assume that for all
the claim holds for all
.
We shall prove that for
the claim holds for all
:
![{\displaystyle {\begin{aligned}f(x)&=(x-x_{0})^{k+1}Q(x)\\[5pt]f^{(1)}\!(x)&=(k+1)(x-x_{0})^{k}Q(x)+(x-x_{0})^{k+1}Q^{(1)}\!(x)\\[5pt]&={\color {blue}(x-x_{0})^{k}}{\color {red}{\bigl [}(k+1)Q(x)+(x-x_{0})Q^{(1)}\!(x){\bigr ]}}\\[5pt]&={\color {blue}(x-x_{0})^{k}}{\color {red}R(x)}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/10e4e5a39a74d7a6eab742a1b08363077b6c0317)
The blue part is of multiplicity
, with
a polynomial such that
.
Hence their product satisfies the induction hypothesis.
Let us now define a polynomial
![{\displaystyle {\begin{aligned}f(x)&={\frac {1}{(p-1)!}}\,x^{p-1}{\bigl [}(1-x)(2-x)\cdots (n-x){\bigr ]}^{p}\\[5pt]&={\frac {(n!)^{p}}{(p-1)!}}x^{p-1}+\!\!\sum _{m\,=\,p}^{(n+1)p-1}\!\!\!{\frac {b_{m}}{(p-1)!}}x^{m}\quad :b_{m}\in \mathbb {Z} \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a8a45520f4ec461bffa5cd57370e2eb4f7bc7d3)
and
is a prime number such that
. We get:

hence for all
, the function
is a polynomial with integer coefficients all divisible by
.
By part 2, for all
we get:

Therefore
is also an integer divisible by
.
On the other hand, for
we get:

But
, and
are not divisible by
. Therefore
is not divisible by
.
Conclusion:
is an integer not divisible by
, and particularly
. Hence
.
By part 2, by the triangle inequality for integrals we get:

By the triangle Inequality we get:

But
, hence for sufficiently large
we get
. A contradiction.
Conclusion:
is transcendental.