Jump to content

Fractals/Iterations in the complex plane/periodic points

From Wikibooks, open books for an open world

How to describe a cycle ( periodic orbit)

  • period
  • stability of a periodic Orbit ( cycle)
  • (cyclic) permutation[1]
  • basin of attraction


period

[edit | edit source]

Here period means period of iterated function (map).[2]

Point z has period p under f if :

or in other notation:


The smallest positive integer p satisfying the above is called the prime period or least period of the point z.

equation and polynomial F

[edit | edit source]

So equation for periodic points:

or in other notation

degree

[edit | edit source]

Degree d of polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients.

Degree of rational function is the higher value from the degree of numerator and denominator


In case of iterated quadratic polynomial  :

How to find periodic points for given period?

[edit | edit source]
Periodic points of f(z) = z*z-0.75 for period =6 as intersections of 2 implicit curves

Visual check

[edit | edit source]

Visual check[3] of critical orbit helps to:

  • understand dynamics
  • find periodic points

Symbolic methods

[edit | edit source]

Complex quadratic map

 f(z,c):=z*z+c;
 fn(p, z, c) :=
  if p=0 then z
  elseif p=1 then f(z,c)
  else f(fn(p-1, z, c),c);

Standard polynomial Fp which roots are periodic z-points of period p and its divisors

[edit | edit source]
  • math notation : [4]
  • ggplot[5]
  • Maxima CAS function :
F(p, z, c) := fn(p, z, c) - z ;

Function for computing reduced polynomial Gp which roots are periodic z-points of period p without its divisors

[edit | edit source]
  • math definition :
  • Maxima function:
G[p,z,c]:=
block(
[f:divisors(p),
t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */
f:delete(p,f), /* delete p from list of divisors */
if p=1
then return(F(p,z,c)),
for i in f do 
 t:t*G[i,z,c],
g: F(p,z,c)/t,
return(ratsimp(g))
)$
Finding equations for periodic points
[edit | edit source]
Standard equations
[edit | edit source]

Equation for periodic point for period is :

so in Maxima :

for i:1 thru 4 step 1 do disp(i,expand(Fn(i,z,c)=0));
1
z^2-z+c=0
2
z^4+2*c*z^2-z+c^2+c=0
3
z^8+4*c*z^6+6*c^2*z^4+2*c*z^4+4*c^3*z^2+4*c^2*z^2-z+c^4+2*c^3+c^2+c=0
4
z^16+8*c*z^14+28*c^2*z^12+4*c*z^12+56*c^3*z^10+24*c^2*z^10+70*c^4*z^8+60*c^3*z^8+6*c^2*z^8+2*c*z^8+56*c^5*z^6+80*c^4*z^6+
24*c^3*z^6+8*c^2*z^6+28*c^6*z^4+60*c^5*z^4+36*c^4*z^4+16*c^3*z^4+4*c^2*z^4+8*c^7*z^2+24*c^6*z^2+24*c^5*z^2+16*c^4*z^2+
8*c^3*z^2- z+c^8+4*c^7+6*c^6+6*c^5+5*c^4+2*c^3+c^2+c=0

Degree of standard equations is

These equations give periodic points for period p and its divisors. It is because these polynomials are product of lower period polynomials :

for i:1 thru 4 step 1 do disp(i,factor(Fz(i,z,c)));
1
z^2-z+c
2
(z^2-z+c)*(z^2+z+c+1)
3
(z^2-z+c)*(z^6+z^5+3*c*z^4+z^4+2*c*z^3+z^3+3*c^2*z^2+3*c*z^2+z^2+c^2*z+2*c*z+z+c^3+2*c^2+c+1)
4
(z^2-z+c)*(z^2+z+c+1)(z^12+6*c*z^10+z^9+15*c^2*z^8+3*c*z^8+4*c*z^7+20*c^3*z^6+12*c^2*z^6+z^6+6*c^2*z^5+2*c*z^5+15*c^4*z^4+18*c^3*z^4+3*
c^2*z^4+4*c*z^4+4*c^3*z^3+4*c^2*z^3+z^3+6*c^5*z^2+12*c^4*z^2+6*c^3*z^2+5*c^2*z^2+c*z^2+c^4*z+2*c^3*z+c^2*z+2*c*z+c^6+
3*c^5+3*c^4+3*c^3+2*c^2+1)

so

Standard equations can be reduced to equations giving periodic points for period p without its divisors.

See also : prime factors in wikipedia

Reduced equations
[edit | edit source]

Reduced equation is

so in Maxima gives :

for i:1 thru 5 step 1 do disp(i,expand(G[i,z,c]=0));
1
z^2-z+c=0
2
z^2+z+c+1=0
3
z^6+z^5+3*c*z^4+z^4+2*c*z^3+z^3+3*c^2*z^2+3*c*z^2+z^2+c^2*z+2*c*z+z+c^3+2*c^2+c+1=0
4
z^12+6*c*z^10+z^9+15*c^2*z^8+3*c*z^8+4*c*z^7+20*c^3*z^6+12*c^2*z^6+z^6+6*c^2*z^5+2*c*z^5+15*c^4*z^4+18*c^3*z^4+
3*c^2*z^4+4*c*z^4+4*c^3*z^3+4*c^2*z^3+z^3+6*c^5*z^2+12*c^4*z^2+
6*c^3*z^2+5*c^2*z^2+c*z^2+c^4*z+2*c^3*z+c^2*z+2*c*z+c^6+3*c^5+3*c^4+3*c^3+2*c^2+1=0



period degree Fp degree Gp
1 2^1 = 2 2
2 2^2=4 2
3 2^3 = 8 6
4 2^4 = 16 12
p d = 2^p
Computing periodic points
[edit | edit source]

Definition in wikipedia [6]

Fixed points ( period = 1 )
[edit | edit source]

Equation defining fixed points :

 z^2-z+c = 0

in Maxima :

Define c value

(%i1) c:%i;
(%o1) %i

Compute fixed points

(%i2) p:float(rectform(solve([z*z+c=z],[z])));
(%o2) [z=0.62481053384383*%i-0.30024259022012,z=1.30024259022012-0.62481053384383*%i]

Find which is repelling :

abs(2*rhs(p[1]));

Show that sum of fixed points is 1

(%i10) p:solve([z*z+c=z], [z]);
(%o10) [z=-(sqrt(1-4*%i)-1)/2,z=(sqrt(1-4*%i)+1)/2]
(%i14) s:radcan(rhs(p[1]+p[2]));
(%o14) 1

Draw points :

(%i15) xx:makelist (realpart(rhs(p[i])), i, 1, length(p));
(%o15) [-0.30024259022012,1.30024259022012]
(%i16) yy:makelist (imagpart(rhs(p[i])), i, 1, length(p));
(%o16) [0.62481053384383,-0.62481053384383]
(%i18) plot2d([discrete,xx,yy], [style, points]);

One can add point z=1/2 to the lists:

(%i31) xx:cons(1/2,xx);
(%o31) [1/2,-0.30024259022012,1.30024259022012]
(%i34) yy:cons(0,yy);
(%o34) [0,0.62481053384383,-0.62481053384383]
(%i35) plot2d([discrete,xx,yy], [style, points]);

In C :


  
complex double GiveFixed(complex double c){
/* 

Equation defining fixed points : z^2-z+c = 0
	z*2+c = z
	z^2-z+c = 0

coefficients of standard form ax^2+ bx + c  
 	a = 1 , b = -1 , c = c
 
The discriminant d is 

	d=b^2- 4ac 
	d = 1 - 4c
	
 
 alfa =  (1-sqrt(d))/2 
*/

	complex double d = 1-4*c;
	complex double z = (1-csqrt(d))/2.0;
	return z;

}



double complex GiveAlfaFixedPoint(double complex c)
{
  // Equation defining fixed points : z^2-z+c = 0
  // a = 1, b = -1 c = c
  double dx, dy; //The discriminant is the  d=b^2- 4ac = dx+dy*i
  double r; // r(d)=sqrt(dx^2 + dy^2)
  double sx, sy; // s = sqrt(d) = sqrt((r+dx)/2)+-sqrt((r-dx)/2)*i = sx + sy*i
  double ax, ay; // alfa = ax+ay*I
 
 // d=1-4c = dx+dy*i
 dx = 1 - 4*creal(c);
 dy = -4 * cimag(c);
 // r(d)=sqrt(dx^2 + dy^2)
 r = sqrt(dx*dx + dy*dy);
 //sqrt(d) = s =sx +sy*i
 sx = sqrt((r+dx)/2);
 sy = sqrt((r-dx)/2);
 // alfa = ax +ay*i = (1-sqrt(d))/2 = (1-sx + sy*i)/2
 ax = 0.5 - sx/2.0;
 ay =  sy/2.0;

return ax+ay*I;
}
period 2 points
[edit | edit source]

Using non-reduced equation in Maxima CAS :

(%i2) solve([(z*z+c)^2+c=z], [z]);
(%o2) [z=-(sqrt(-4*c-3)+1)/2,z=(sqrt(-4*c-3)-1)/2,z=-(sqrt(1-4*c)-1)/2,z=(sqrt(1-4*c)+1)/2]

Show that z1+z2 = -1

(%i4) s:radcan(rhs(p[1]+p[2]));
(%o4) -1

Show that z2+z3=1

(%i6) s:radcan(rhs(p[3]+p[4]));
(%o6) 1

Reduced equation :

 

so standard coefficient names of single-variable quadratic polynomial[7]

are :

 a = 1
 b = 1
 c = c+1

One can use the quadratic formula[8] to find the exact solution ( roots of quadratic equation):[9]


where :


Another formula[10] can be used to solve square root of complex number "

where :

so

Period 3 points
[edit | edit source]

In Maxima CAS

kill(all);
remvalue(z);

f(z,c):=z*z+c; /* Complex quadratic map */
 finverseplus(z,c):=sqrt(z-c);
 finverseminus(z,c):=-sqrt(z-c);

/* */
fn(p, z, c) :=
  if p=0 then z
  elseif p=1 then f(z,c)
  else f(fn(p-1, z, c),c);

/*Standard polynomial F_p \, which roots are periodic z-points of period p and its divisors */
F(p, z, c) := fn(p, z, c) - z ;

/* Function for computing reduced polynomial G_p\, which roots are periodic z-points of period p without its divisors*/
G[p,z,c]:=
block(
[f:divisors(p),
t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */
f:delete(p,f), /* delete p from list of divisors */
if p=1
then return(F(p,z,c)),
for i in f do 
 t:t*G[i,z,c],
g: F(p,z,c)/t,
return(ratsimp(g))
)$

 GiveRoots(g):=
 block(
 [cc:bfallroots(expand(%i*g)=0)],
 cc:map(rhs,cc),/* remove string "c=" */
 cc:map('float,cc),
 return(cc)
  )$

compile(all);

k:G[3,z,c]$
c:1;
s:GiveRoots(ev(k))$
s;

Numerical methods

[edit | edit source]


Newton method

[edit | edit source]

find one root

[edit | edit source]
algorithm
[edit | edit source]

For given ( and fixed = constant values):

  • period p
  • parameter c
  • initial aproximation = initial value of Newton iteration

find one periodic point of complex quadratic polynomial :

  

where

  

Note that periodic point is only one of p points of periodic cycle.

To find periodic point one have to solve equation ( = find a single zero of a function F):


Lets call left side of this equation (arbitrary name) function :


Derivative of function with respect to variable z :

 

It can be checked using Maxima CAS:

(%i1) f:z*z+c;
(%o1)                                                                                                            z^2  + c
(%i2) F:f-z;
(%o2)                                                                                                          z^2  - z + c
(%i3) diff(F,z,1);
(%o3)                                                                                                           2 z - 1

Newton iteration is :


gives sequence of points:

where:

  • n is a number of Newton iteration
  • p is a period ( fixed positive integer)
  • is an initial aproximation of periodic point
  • is a final aproximation of periodic point
  • is computed using quadratic iteration with as a starting point
  • is a value of first derivative . It computed using iteration
  • is called Newton function. Sometimes different and shorter notation is used :
stoping criteria
[edit | edit source]
  •  : predefined accuracy threshold ( succes = converged )[11]
  •  : maximal number of iterations ( fail to converge)

Usually one starts with :

 

for long double floating point number format

 
precision
[edit | edit source]

Precision is proportional to the degree of polynomial F, which is proportional to the period p

 

so

 
IEEE 754 - 2008 Common name C++ data type Base Precision Machine epsilon =
binary16 half precision short 2 11 2−10 ≈ 9.77e-04
binary32 single precision float 2 24 2−23 ≈ 1.19e-07
binary64 double precision double 2 53 2−52 ≈ 2.22e-16
extended precision _float80[12] 2 64 2−63 ≈ 1.08e-19
binary128 quad(ruple) precision _float128[12] 2 113 2−112 ≈ 1.93e-34

where :

  • precision = number of fraction's binary digits
  • accuracy < machine epsilon
 precision =  -log2(accuracy)
 

Relation between accuracy and degree d:[13]

  • accuracy = 1/d
  • accuracy = 1/(2 d log d)

Compare:

number of iterations
[edit | edit source]
/* 
gcc -std=c99 -Wall -Wextra -pedantic -O3 m.c -lm
./a.out
*/

#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

const double pi = 3.141592653589793;

static inline double cabs2(complex double z) {
  return (creal(z) * creal(z) + cimag(z) * cimag(z));
}

/* 
newton function 
 N(z) = z - (fp(z)-z)/fp'(z)) 
 used for computing periodic point 
 of complex quadratic polynomial
 f(z) = z*z +c

*/

complex double N( complex double c, complex double zn , int pMax, double er2){

  
complex double z = zn;
complex double d = 1.0; /* d = first derivative with respect to z */
int p;

for (p=0; p < pMax; p++){

   
   d = 2*z*d; /* first derivative with respect to z */
   z = z*z +c ; /* complex quadratic polynomial */
   if (cabs(z) >er2) break;
    
}

      z = zn - (z - zn)/(d - 1) ;

return z;
}

/* 
compute periodic point 
of complex quadratic polynomial
using Newton iteration = numerical method

*/

complex double GivePeriodic(complex double c, complex double z0, int period, double eps2, double er2){

complex double z = z0;
complex double zPrev = z0; // prevoiuus value of z
int n ; // iteration
const int nMax = 64;

for (n=0; n<nMax; n++) {
     
    z = N( c, z, period, er2);
    if (cabs2(z - zPrev)< eps2) break;
    
    zPrev = z; }

return z;
}

int main() {

 
 const double ER2  = 2.0 * 2.0; // ER*ER
 const double EPS2 = 1e-100 * 1e-100; // EPS*EPS

  int period = 3;
  complex double c = -0.12565651+0.65720*I ; // https://commons.wikimedia.org/wiki/File:Fatou_componenets_3.png
  complex double z0 = 0.0 ; // initial aproximation for Newton method; usuallly critical point
 
  complex double zp; // periodic point
  
 
  
  
  
  
  zp = GivePeriodic( c , z0, period, EPS2, ER2); //
  
  
  
 
  
  
  printf (" c = %f ; %f \n",  creal(c), cimag(c)); 
  printf (" period = %d  \n",  period); 
  printf (" z0 = %f ; %f \n",  creal(z0), cimag(z0));
  printf (" zp = %.16f ; %.16f \n",  creal(zp), cimag(zp));

  return 0;
}
Maxima CAS
[edit | edit source]
/*

batch file for Maxima CAS

find periodic point of iterated function

solve : 
c0: -0.965 + 0.085*%i$ //     period of critical orbit = 2
2						1 ( alfa ) repelling 						2						1 ( beta) repelling
[0.08997933216560844 %i - 0.972330689471866, 	0.0385332450804691 %i - 0.6029437025417168, 	(- 0.0899793321656081 %i) - 0.02766931052813359, 	1.602943702541716 - 0.03853324508046944 %i] // periodic z points
[1.952970301777068, 				1.208347498712429, 				0.1882750218384916, attr					3.206813573935709] // stability ( 1)
[0.3676955262170045, 				1.460103677644584, 				0.3676955262170032, attr					10.28365329797831] // stability (2)

Newton : 
z0: 0 				 zn : - 0.08997933216560859 %i - 0.02766931052813337
z0: -0.86875-0.03125*%i 	 zn: 0.08997933216560858*%i-0.9723306894718666

(%o21) (-0.08997933216560859*%i)-0.02766931052813337
(%i22) zn2:Periodic(period,c0,(-0.86875)-0.03125*%i,ER,eps)
(%o22) 0.08997933216560858*%i-0.9723306894718666

*/

kill(all); /* if you want to delete all variables and functions. Careful: this does not completely reset the environment to its initial state. */
remvalue(z);
reset(); /*  Resets many (global) system variables */
ratprint : false; /* remove "rat :replaced  " */
display2d:false$ /* display in one line */

mode_declare(ER, real)$
ER: 1e100$
mode_declare(eps,real)$
eps:1e-100$
mode_declare( c0, complex)$
c0: -0.965 + 0.085*%i$ /*     period of critical orbit = 2*/
mode_declare(z0, complex)$
z0:0$
mode_declare(period, integer)$
period:2$

/* ----------- functions  ------------------------ */

/*
 https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials
complex quadratic polynomial
*/

f(z,c):=z*z+c$

/* iterated map */

fn(p, z, c) :=
  if p=0 then z
  elseif p=1 then f(z,c)
  else f(fn(p-1, z, c),c);
  
  
Fn(p,z,c):=  fn(p, z, c) - z$

  
  
/* find periodic point using solve = symbolic method */  
S(p,c):=
(
s: solve(Fn(p,z,c)=0,z),
s: map( rhs, s),
s: float(rectform(s)))$

/* newton function : N(z) = z - (fp(z)-z)/(f'(z)-1) */

N(zn, c, iMax, _ER):=block(

[z, d], /* d = first derivative with respect to z */
/* mode_declare([z,zn, c,d], complex), */

d  : 1+0*%i,
z  : zn,

catch( for i:1 thru iMax step 1 do (

 
 /*  print("i =",i,", z=",z, ", d = ",d),   */

  
  d : float(rectform(2*z*d)), /* first derivative with respect to z */
  z : float(rectform(z^2+c)), /* complex quadratic polynomial */
  
  
  if ( cabs(z)> _ER)  /* z is escaping */
     then  throw(z)

  )), /* catch(for i */
  
 
   if (d!=0) /* if not : divide by 0 error */ 
     then  z:float(rectform( zn - (z - zn)/(d-1))),
      
   
 return(z) /*  */

)$

/* compute periodic point 
  of complex quadratic polynomial
using Newton iteration = numerical method  */
Periodic(p, c, z0, _ER, _eps) :=block
(
 [z, n, temp], /* local variables */

 if (p<1) 
   then print("to small p ")
   else (

 	n:0,
 	z: z0,  /*  */
 	temp:0,
 	/* print("n = ", n, "zn = ", z ),   */
 
 
        catch(
 	  while (1) do (
 
 		z : N(z, c, p, _ER),   
 		n:n+1,
 		
   	       /*  print("n = ", n, "zn = ", z ),  */
   		
   		
   		if(cabs(temp-z)< _eps) then  throw(z),
   		temp:z,
 
 		if(n>64) then throw(z) ))), /* catch(while) */
 
 	

 
 return(z) 
 
  
  
  )$
  
  
 compile(all)$

/* ------------------ run ---------------------------------------- */

zn1: Periodic(period, c0, z0, ER, eps);   
zn2 : Periodic(period, c0,-0.868750000000000-0.031250000000000*%i, ER, eps);

output:

(%i21) zn1:Periodic(period,c0,z0,ER,eps)
(%o21) (-0.08997933216560859*%i)-0.02766931052813337
(%i22) zn2:Periodic(period,c0,(-0.86875)-0.03125*%i,ER,eps)
(%o22) 0.08997933216560858*%i-0.9723306894718666

find all roots

[edit | edit source]

Methods:

  • The iterated refinement Newton method[13]
  • the Ehrlich-Aberth iteration ( Mpsolve[14] )

Number:

  • number of all roots = degree of polynomial ( Fundamental Theorem of Algebra )
  • degree = where p is a period


period degree number of all roots
1 2^1 = 2 2
2 2^2=4 4
3 2^3 = 8 8
p d = 2^p d


"Viete tests[15] on the roots found:

  • if p is any polynomial of degree d and normalized (i.e. the leading coefficient is 1), then the sum of all roots of p must be equal to the negative of the coefficient of degree d − 1.
  • Moreover, the product of the roots must be equal to (−1)^d times the constant coefficient. If one root vanishes, then the product of the remaining d − 1 roots is equal to (−1)^(d−1) times the linear term. "

"The sum of all roots should be 0 = the coefficient a of the degree d − 1 term of our polynomial. "[16]

The constant term is a0. Its value depends on the period (degree).

/*

batch file for Maxima CAS

find all periodic point of iterated function
using solve

*/

kill(all);         /* if you want to delete all variables and functions. Careful: this does not completely reset the environment to its initial state. */
remvalue(all);
reset();           /*  Resets many (global) system variables */
ratprint : false;  /* remove "rat :replaced  " */
display2d:false$   /* display in one line */

mode_declare(c0, complex)$
c0: -0.965 + 0.085*%i$ /*     period of critical orbit = 2*/
mode_declare(z, complex)$

mode_declare(period, integer)$
period:2  $

/* ----------- functions  ------------------------ */

/*
 https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials
complex quadratic polynomial
*/

f(z,c):=z*z+c$

/* iterated map */

fn(p, z, c) :=
  if p=0 then z
  elseif p=1 then f(z,c)
  else f(fn(p-1, z, c),c);
  
  
Fn(p,z,c):=  fn(p, z, c) - z$

  
  
/* find periodic point using solve = symbolic method */  
S(p,c):=
(
s: solve(Fn(p,z,c)=0,z),
s: map( rhs, s),
s: float(rectform(s)))$

/* gives a list of coefficients */
GiveCoefficients(P,x):=block
( [a, degree],
  P:expand(P), /* if not expanded */
  degree:hipow(P,x),
  a:makelist(coeff(P,x,degree-i),i,0,degree));

GiveConstCoefficient(period, z, c):=(
 [l:[]],
 l :  GiveCoefficients( Fn(period,z,c), z),
 l[length(l)]
)$

/*

https://en.wikipedia.org/wiki/Vieta%27s_formulas
sum of all roots , here it should be zero

*/

VietaSum(l):=(
abs(sum(l[i],i, 1, length(l)))

)$

/*

it should be = (-1)^d* a0 = constant coefficient of Fn

*/

VietaProduct(l):=(
rectform(product(l[i],i, 1, length(l)))
)$

compile(all);

s: S(period, c0)$

vs: VietaSum(s);

vp : VietaProduct(s);

a0: GiveConstCoefficient( period, z,c0);

example results
[edit | edit source]

The equation for period p=2 cycle is :

 z^4+2*c*z^2-z+c^2+c = 0

so d-1 = 3 coefficient is 0

Degree d :


The four roots for c= -0.965 + 0.085*i are :

[0.08997933216560844*%i-0.972330689471866, 0.0385332450804691*%i-0.6029437025417168, (-0.0899793321656081*%i)-0.02766931052813359, 1.602943702541716-0.03853324508046944*%i]

their sum is :

 

their product :

  

So results have passed Viete's tests

How to compute stability of periodic point ?

[edit | edit source]

stability of periodic points (orbit) - multiplier

[edit | edit source]
Stability index of periodic points along horizontal axis
boundaries of regions of parameter plane with attracting orbit of periods 1-6
Critical orbit of discrete dynamical system based on complex quadratic polynomial. It tends to weakly attracting fixed point with abs(multiplier)=0.99993612384259

The multiplier (or eigenvalue, derivative) of a rational map iterated times at cyclic point is defined as:

where is the first derivative of with respect to at .

Because the multiplier is the same at all periodic points on a given orbit, it is called a multiplier of the periodic orbit.

The multiplier is:

  • a complex number;
  • invariant under conjugation of any rational map at its fixed point;[17]
  • used to check stability of periodic (also fixed) points with stability index

A periodic point is[18]

  • attracting when
    • super-attracting when
    • attracting but not super-attracting when
  • indifferent ( neutral) when
    • rationally indifferent or parabolic or weakly attractive[19] if is a root of unity;
    • irrationally indifferent if but multiplier is not a root of unity;
  • repelling when

Periodic points

  • that are attracting are always in the Fatou set
  • that are repelling are in the Julia set;
  • that are indifferent fixed points may be in one or the other.[20] A parabolic periodic point is in the Julia set.
/* 
gcc -std=c99 -Wall -Wextra -pedantic -O3 m.c -lm

c = -0.965000 ; 0.085000 
 period = 2  
 z0 = 0.000000 ; 0.000000 
 zp = -0.027669 ; -0.089979 
 m = 0.140000 ; 0.340000 
 Internal Angle = 0.187833 
 internal radius = 0.367696 
 
 
 -----------------------------------------
  for (int p = 1; p < pMax; p++){
      
      if( cabs(c)<=2){
      w =  MultiplierMap(c,p);
      iRadius = cabs(w);
      if ( iRadius <= 1.0) { // attractring
           iAngle = GiveTurn(w);
           period=p; 
           break;}
      }   }

*/

#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

const double pi = 3.141592653589793;

static inline double cabs2(complex double z) {
  return (creal(z) * creal(z) + cimag(z) * cimag(z));
}

/* newton function : N(z) = z - (fp(z)-z)/f'(z)) */

complex double N( complex double c, complex double zn , int pMax, double er2){

  
complex double z = -zn;
complex double d = -1.0; /* d = first derivative with respect to z */
int p;

for (p=0; p < pMax; p++){

   
   d = 2*z*d; /* first derivative with respect to z */
   z = z*z +c ; /* complex quadratic polynomial */
   if (cabs(z) >er2) break;
    
}

 
 
 
 if ( cabs2(d) > 2) 
     z = zn - (z - zn)/d ;

return z;
}

/* 
compute periodic point 
of complex quadratic polynomial
using Newton iteration = numerical method

*/

complex double GivePeriodic(complex double c, complex double z0, int period, double eps2, double er2){

complex double z = z0;
complex double zPrev = z0; // prevoiuus value of z
int n ; // iteration
const int nMax = 64;

for (n=0; n<nMax; n++) {
     
    z = N( c, z, period, er2);
    if (cabs2(z - zPrev)< eps2) break;
    
    zPrev = z; }

return z;
}

complex double AproximateMultiplierMap(complex double c, int period, double eps2, double er2){
     
     complex double z;  // variable z 
     complex double zp ; // periodic point 
     complex double zcr = 0.0; // critical point
     complex double d = 1;
     
     int p;
     
     // first find periodic point
     zp =  GivePeriodic( c, zcr, period,  eps2, er2); // Find periodic point z0 such that Fp(z0,c)=z0 using Newton's method in one complex variable
     
     // Find w by evaluating first derivative with respect to z of Fp at z0 
     if ( cabs2(zp)<er2) {
     
     
     z = zp;
     for (p=0; p < period; p++){
        d = 2*z*d; /* first derivative with respect to z */
        z = z*z +c ; /* complex quadratic polynomial */
     
     }}
     else d= 10000; //

return d;
}

complex double MultiplierMap(complex double c, int period, double eps2, double er2){

complex double w;
switch(period){
case 1: w = 1.0 - csqrt(1.0-4.0*c); 	break; // explicit
case 2: w = 4.0*c + 4; 			break; //explicit
default:w = AproximateMultiplierMap(c, period, eps2, er2); 	break; //

}

return w;

}

/*
gives argument of complex number in turns 
https://en.wikipedia.org/wiki/Turn_(geometry)

*/

double GiveTurn( double complex z){
double t;

  t =  carg(z);
  t /= 2*pi; // now in turns
  if (t<0.0) t += 1.0; // map from (-1/2,1/2] to [0, 1) 
  return (t);
}

int main() {

  
 const double ER2  = 2.0 * 2.0; // ER*ER
 const double EPS2 = 1e-100 * 1e-100; // EPS*EPS

  int period = 3;
  complex double c = -0.12565651+0.65720*I ; // https://commons.wikimedia.org/wiki/File:Fatou_componenets_3.png
  complex double z0 = 0.0 ; // initial aproximation for Newton method; usuallly critical point
 
  complex double zp; // periodic point
  complex double m; // multiplier
  
 
  
  
  
  
  zp = GivePeriodic( c , z0, period, EPS2, ER2); //
  
  m = MultiplierMap ( c, period,  EPS2, ER2 );
  
 
  
  
  printf (" c = %f ; %f \n",  creal(c), cimag(c)); 
  printf (" period = %d  \n",  period); 
  printf (" z0 = %f ; %f \n",  creal(z0), cimag(z0));
  printf (" zp = %.16f ; %.16f \n",  creal(zp), cimag(zp)); 
  printf (" m = %.16f ; %.16f \n",  creal(m), cimag(m)); 
  printf (" Internal Angle = %.16f \n internal radius = %.16f \n", GiveTurn( m), cabs(m));

  return 0;
}

Maxima CAS

[edit | edit source]
/* 
Computes periodic points 
z: z=f^n(z)
and its stability index ( abs(multiplier(z))

for complex quadratic polynomial :
f(z)=z*z+c

batch file for Maxima cas
Adam Majewski 20090604
fraktal.republika.pl
*/

/* basic function  = monic and centered complex quadratic polynomial 
http://en.wikipedia.org/wiki/Complex_quadratic_polynomial

*/
f(z,c):=z*z+c $

/* iterated function */
fn(n, z, c) :=
    if n=1 	then f(z,c)
			else f(fn(n-1, z, c),c) $
/* roots of Fn are periodic point of  fn function */
Fn(n,z,c):=fn(n, z, c)-z $

/* gives irreducible divisors of polynomial Fn[p,z,c] 
which roots are periodic points of period p */
G[p,z,c]:=
block(
 
 [f:divisors(p),t:1],
 g,
 f:delete(p,f),
 if p=1 
	then return(Fn(p,z,c)),
 for i in f do t:t*G[i,z,c],
 g: Fn(p,z,c)/t,  
 return(ratsimp(g))
  )$
  
  
  
/* use :
load(cpoly); 
roots:GiveRoots_bf(G[3,z,c]);

*/
GiveRoots_bf(g):=
block(
 
 [cc:bfallroots(expand(g)=0)],
 cc:map(rhs,cc),/* remove string "c=" */
 return(cc)
  )$

/* -------------- main ----------------- */
load(cpoly); 
/* c should be inside Mandelbrot set to make attracting periodic points */
/* c:0.74486176661974*%i-0.12256116687665;  center of period 3 component */
coeff:0.37496784+%i*0.21687214; /* -0.11+0.65569999*%i;*/
disp(concat("c=",string(coeff)));

for p:1 step 1 thru 5 do /* period of z-cycle */
( 
 
 disp(concat("period=",string(p))),
/* multiplier */ 
define(m(z),diff(fn(p,z,c),z,1)),

/* G should be found when c is variable without value */
eq:G[p,z,c],  /* here should be c as a symbol not a value */

c:coeff, /* put a value to a symbol here */

/* periodic points */

roots[p]:GiveRoots_bf(ev(eq)), /* ev puts value instead of c symbol */
/* multiplier of periodic points */
for z in roots[p] do disp(concat( "z=",string(float(z)),";     abs(multiplier(z))=",string(cabs(float(m(z)))) ) ),
kill(c)
)$

/*

results:

c:0.74486176661974*%i-0.12256116687665
periodic z-points:
supperattracting cycle (multiplier=0):
3.0879115871966895*10^-15*%i-1.0785250533182843*10^-14=0
0.74486176661974*%i-0.12256116687665=c
0.5622795120623*%i-0.66235897862236=c*c+c

=== repelling cycle
0.038593416246119-1.061217891258986*%i,
0.99358185708018-0.90887310643243*%i,

0.66294971900937*%i-1.247255127827274]
--------------------------------------------

for c:-0.11+0.65569999*%i;
abs(multiplier) = 0.94840556944351

z1a=0.17434140717278*%i-0.23080799291989,
z2a=0.57522120945524*%i-0.087122596659277,
z3a=0.55547045915754*%i-0.4332890929585,

abs(multiplier) =15.06988063154376
z1r=0.0085747730232722-1.05057855305735*%i,
z2r=0.95628667892607-0.89213756745704*%i,
z3r=0.63768304472883*%i-1.213641769411674

How to compute period of given periodic point ?

[edit | edit source]

How is it possible to calculate the true period?

  • Robert Munafo's polygon iteration method described in Mu-Ency
  • Knighty's Taylor ball iteration method

Both find the lowest period nucleus in a region. If there is no nucleus in the region (either 100% exterior, or 100% interior not surrounding a nucleus) then I don't know what happens.

The polygon method can be adapted to pre-periodic Misiurewicz points. Probably the Taylor ball method can be too. A version of the ball method can be adapted to Burning Ship etc using Jacobians, where the polygon method can sometimes fail due to early folds.



int GivePeriod(complex double c){




	if (cabs(c)>2.0) {return 0;} // exterior
	if (cabs(1.0 - csqrt(1.0-4.0*c))<=1.0 ) {return 1;} // main cardioid
	if (cabs(4.0*c + 4)<=1.0){return 2;} // period 2 component
	
	int period =  GivePeriodByIteration(c); 
	
	if ( period < 0) // last chance
		{ 
			iUnknownPeriod +=1;
			//fprintf(stderr,"unknown period = %d < 0 c = %.16f %+.16f \n", period, creal(c), cimag(c) ); // print for analysis
			//period = m_d_box_period_do(c, 0.5, iterMax_LastIteration);
			//fprintf(stderr,"box period = %d  \n", period);
			
		}
	
	// period > 0 means is periodic 
	// period = 0 means is not periodic = exterior = escaping to infinity
	// period < 0 means period not found, maybe increase global variable iterMax_Period ( see local_setup)

	return period; 

}

marcm200

[edit | edit source]
A heuristics to get to a point where the period detection might work correctly could also be: Compute the rolling derivative from the start on, i.e 2^n*product over all iterates. If the orbit approaches an attracting cycle of  length p, cyclic portions of that overall product will become smaller than one in magnitude. And repeatedly multiplying those values will eventually let the |rolling derivative| fall below any ever so small threshold. So if one  were to define beforehand such a small value like 10^-40, if the rolling derivative is first below, then doing a periodicity check by number equaltiy up to an epsilon should give the correct period.  I only use it with unicritical polynomials so chances are that during iteration one does not fall onto a critical point and then the rolling derivative gets stuck at 0 forever (so for z^2+c, starting at c is usually feasible, as +-sqrt(-c) is then almost always irrationally complex and not representable in software. However, with bad luck, its approximation might still lead to computer-0 within machine-epsilon).

( marcm200)

Knighty's Taylor ball iteration method

[edit | edit source]

Finding the roots of the SA polynomial as suggested by knightly is a totally different approach. Which of the many polynomial root finding algorithms do you use?

ball interval arithmetic" is also called "midpoint-radius interval".
Divide and conquer, using ball interval arithmetic to isolate the roots and Newton-Raphson to refine them.
My approach to Ball interval arithmetic is  very simple:
To a given number z we associate a disc representing an estimation of the errors. A ball interval may be represented like this: [z] = z + r [E]
Here z is the center of the ball, r is the radius and [E] is the error symbol representing the unit disc centred at 0.
Being not a mathematician, be aware that these definitions are very very sloppy. In particular, I don't care about rounding stuff.
One can also think about [E] as a function in some "mute" variables. for example, for complex numbers we can write:
[E] = f(a,b) = a * exp(i *b), where a is in [0,1] and b any real number.
it can also be written like this:
[E]= [0,1] * exp(i * [-inf, +inf])
A nice property of [E] is that raising it to a (positive) power will yield [E].
Another one is: [E] = -[E]
... Another one: z[E] = |z| [E]
Some basic operations on ball interval are:
-Addition:
  [v] + [w] = v + rv [E] + w + rw [E] = (v+w) + (rv+rw) [E]
-Subtraction:
  [v] - [w] = (v-w) + (rv+rw) [E]; because [E] will absorb the '-' sign.
-Multiplication:
 [v] [w] = (v + rv [E]) (w + rw [E]) = v*w + v*rw [E] + w*rv [E] + rv*rw [E]? = v*w + (|v|*rw + |w|*rv + rv*rw) [E]; because [E]? = [E]
The division is more complicated: It is not always defined (when 0 is inside the ball) and needs special care.
-Raising to a power:
use successive multiplications... but that may give too large balls... there are other methods.
With these operations one can evaluate polynomials using Horner method for example. It can also be used to iterate zn+1 = zn? + c for example and be used to find nucleus and its period instead of the box method.

You can take a look at the codes attached to below programs

See this note

How to find basin of attracting point ?

[edit | edit source]

What is the relation between Julia set and periodic point ?

[edit | edit source]

See also

[edit | edit source]

References

[edit | edit source]
  1. Very badly ordered cycles of interval maps by Sourav Bhattacharya, Alexander Blokh
  2. Periodic_point in wikipedia
  3. Period of critical orbit with slow dynamics
  4. Numerical Methods for Finding Periodic Orbits at Scholarpedia
  5. Fixed points in ggplot2 by Eric
  6. wikipedia : Periodic_points_of_complex_quadratic_mappings#Finite_fixed_points
  7. wikipedia : Quadratic function
  8. math.stackexchange question : how-to-find-the-solution-of-a-quadratic-equation-with-complex-coefficients
  9. wikipedia : Quadratic equation
  10. math.stackexchange question how-do-i-get-the-square-root-of-a-complex-number
  11. Newton's method in practice: finding all roots of polynomials of degree one million efficiently Dierk Schleicher, Robin Stoll
  12. a b Floating Types - Using the GNU Compiler Collection (GCC)
  13. a b Newton's method in practice II: The iterated refinement Newton method and near-optimal complexity for finding all roots of some polynomials of very large degrees by Robin Stoll, Dierk Schleicher
  14. wikipedia : MPSolve
  15. wikipedia : Vieta's formulas
  16. Newton's method in practice: finding all roots of polynomials of degree one million efficiently by Dierk Schleicher, Robin Stoll
  17. Alan F. Beardon, Iteration of Rational Functions, Springer 1991, ISBN 0-387-95151-2, p. 41
  18. Alan F. Beardon, Iteration of Rational Functions, Springer 1991, ISBN 0-387-95151-2, page 99
  19. Monireh Akbari, Maryam Rabii, Real cubic polynomials with a fixed point of multiplicity two, Indagationes Mathematicae, Volume 26, Issue 1, 2015, Pages 64-74, ISSN 0019-3577, https://doi.org/10.1016/j.indag.2014.06.001. (https://www.sciencedirect.com/science/article/pii/S0019357714000536) Abstract: The aim of this paper is to study the dynamics of the real cubic polynomials that have a fixed point of multiplicity two. Such polynomials are conjugate to fa(x)=ax2(x−1)+x, a≠0. We will show that when a>0 and x≠1, then |fan(x)| converges to 0 or ∞ and, if a<0 and a belongs to a special subset of the parameter space, then there is a closed invariant subset Λa of R on which fa is chaotic. Keywords: Multiplicity; Chaotic; Cubic polynomial; Schwarzian derivative
  20. Some Julia sets by Michael Becker