Jump to content

Fractals/Iterations in the complex plane/qpolynomials

From Wikibooks, open books for an open world

Complex quadratic polynomial[1]

intro

[edit | edit source]
  • " The dynamics of polynomials is much better understood than the dynamics of general rational maps" due to the Bottcher’s theorem[2]
  • infinity is always is superattracting fixed point for polynomials.
  • A polynomial of degree n has at most n real zeros and n−1 turning points.[3]

Forms

[edit | edit source]

z^2+c

[edit | edit source]

Complex quadratic polynomial of the form :

belongs to the class of the functions :

notation

[edit | edit source]

"... typical notational convention is to parameterize critically preperiodic polynomials by an angle of an external ray landing at the critical value rather than by c. In the event that more than one ray lands at the critical value, there may be multiple parameters referring to the same polynomial. As a simpler example, the polynomial:

  • for c= -0.228155493653962 +1.115142508039937 i

How to compute iteration

[edit | edit source]

In Maxima CAS :

(%i28) z:zx+zy*%i;
(%o28) %i*zy+zx
(%i37) c:cx+cy*%i;
(%o37) %i*cy+cx
(%i38) realpart(z^2+c);
(%o38) -zy^2+zx^2+cx
(%i39) imagpart(z^2+c);
(%o39) 2*zx*zy+cy

Critical point

[edit | edit source]
Critical orbits for various parabolic parameters on boundary of Main component of Mandelbrot set

A critical point of is a point in the dynamical plane such that the derivative vanishes :

Since

implies

One can see that :

  • the only (finite) critical point of is the point
  • critical point is the same for all c parameters

is an initial point for Mandelbrot set iteration.[4]

Dynamic plane

[edit | edit source]

period 1 ( = fixed) points :[5]


period 2 points :


Julia set for parabolic parameter on the end fo 1/2 internal ray of main component of Mandelbrot set

First compute muliplier m of the fixed points using internal angle p/q and Maxima CAS:

(%i1) p:1$
(%i2) q:2$
(%i3) m:exp(2*%pi*%i*p/q);
(%o3)                                 - 1

Now compute parameter c of the function :

(%i1) GiveC(t,r):=
(
 [w,c],
 /* point of  unit circle   w:l(internalAngle,internalRadius); */
 w:r*%e^(%i*t*2*%pi),  /* point of circle */
 c:w/2-w*w/4, /* point on boundary of period 1 component of Mandelbrot set */
 float(rectform(c))    
)$

(%i3) c:GiveC(1/2,1);
(%o3) −0.75

Find fixed points z

(%i4) z1:z^2+c;
(%o4) z^2−0.75
(%i2) f:z^2+c;
(%o2)                              z^2  - 0.75
(%i3) d:diff(f,z,1);
(%o3)                                 2 z
(%i6) s:solve(z1=z);
(%o6)                              [z = 3/2, z = -1/2]
(%i7) s:map(rhs,s);
(%o7)                             [z = 3/2, z = -1/2]
(%i8) z:s[1];
(%o8)                                  3/2
(%i9) abs(float(rectform(ev(d))));
(%o9)                                 3.0
(%i10) z:s[2];
(%o10)                                - 1/2
(%i11) abs(float(rectform(ev(d))));
(%o11)                                1.0

So z=-1/2 is a parabolic fixed point.

z^2 + m*z

[edit | edit source]

Complex quadratic polynomial of the form :

which has an indifferent fixed point[6] with multiplier[7]

at the origin[8][9]

belongs to the class of the functions :

How to compute iteration

[edit | edit source]

In Maxima CAS :

(%i1) z:zx+zy*%i;
(%o1) %i*zy+zx
(%i2) m:mx+my*%i;
(%o2) %i*my+mx
(%i3) z1:z^2+m*z;
(%o3) (%i*zy+zx)^2+(%i*my+mx)*(%i*zy+zx)
(%i4) realpart(z1);
(%o4) -zy^2-my*zy+zx^2+mx*zx
(%i5) imagpart(z1);
(%o5) 2*zx*zy+mx*zy+my*zx

Critical point

[edit | edit source]

A critical point of is a point in the dynamical plane such that the derivative vanishes :

Since

implies

One can see that :

  • critical point is related with m value and have to be computed for every m parameters

is an initial point for Mandelbrot set iteration.

Parameter plane lambda

parameter plane

[edit | edit source]

period 1 components

[edit | edit source]
(%i1) e1:z^2+m*z=z;
(%o1) z^2+m*z=z
(%i2) e2:2*z+m=w;
(%o2) 2*z+m=w
(%i3)  s:eliminate ([e1,e2], [z]);
(%o3) [-(m-w)*(w+m-2)]
(%i4) s:solve([s[1]], [m]);
(%o4) [m=2-w,m=w]

It means that there are 2 components of period 1 :

  • one with radius=1 and center=0 ( m=w )
  • second with radius=1 and center= -2 ( m=2-w)

How to compute boundary points of first component :

(%i1) m:exp(2*%pi*%i*p/q);
(%o1) %e^((2*%i*%pi*p)/q)
(%i2) realpart(m);
(%o2) cos((2*%pi*p)/q)
(%i3) imagpart(m);
(%o3) sin((2*%pi*p)/q)

Dynamic plane

[edit | edit source]
Julia set for f(z) = z^2+z or f(z) = z^2 + 1/4 or f(z)= z-z^2
Domains for Fatou coordinate
Orbits of some points inside Julia set are shown ( white points)

First compute parameter of the function :

p:1$
q:1$
m:exp(2*%pi*%i*p/q);

The parameter is:

then the function is:

it gives the same Julia set ( cauliflower [10] ) as function :


Compute fixed points :

(%i3) solve(z=z^2+z);
(%o3) [z=0]
(%i4) multiplicities;
(%o4) [2]

Find it's stability index = abs(multiplier) of the fixed point :

(%i1) f:z^2+z;
(%o1) z^2+z
(%i2) d:diff(f,z,1);
(%o2) 2*z+1
(%i7) z:0;
(%o7) 0
(%i8) abs(float(rectform(ev(d))));
(%o8) 1.0

Critical point :

Iteration :

f(z):= z^2+z;

fn(n, z) :=
  if n=0 then z
  elseif n=1 then f(z)
  else f(fn(n-1, z));

First compute m = muliplier of the fixed points = parameter of the function f using internal angle p/q and Maxima CAS:

(%i1) p:1$
(%i2) q:2$
(%i3) m:exp(2*%pi*%i*p/q);
(%o3)                                 - 1

so function f is :

How to compute iteration  ?

(%i29) z1;
(%o29)                              z^2  - z
(%i30) z:zx+zy*%i;
(%o30)                            %i zy + zx
(%i32) realpart(ev(z1));
(%o32)                         - zy^2  + zx^2  - zx
(%i33) imagpart(ev(z1));
(%o33)                           2 zx zy - zy

Then find fixed points of f :

(%i4) z1:z^2+m*z;
(%o4)                               z^2  - z
(%i5) zf:solve(z1=z);                                                  
(%o5)                           [z = 0, z = 2]
(%i6) multiplicities;
(%o6)                               [1, 1]

Stability of the fixed points :

(%i7) f:z1;
(%o7)                               z^2  - z
(%i8) d:diff(f,z,1);
(%o8)                               2 z - 1
(%i9) z:zf[1];   
(%o9)                                z = 0
(%i10) abs(ev(d));
(%o10)                         abs(2 z - 1) = 1
(%i11) z:zf[2];
(%o11)                               z = 2
(%i12) abs(ev(d));
(%o12)                         abs(2 z - 1) = 3
(%i13) 

So fixed point :

  • z=0 is parabolic ( stability index = 1)
  • z=2 is repelling ( stability indexs = 3 , greater than 1 )

Find critical point  :

(%i14) zcr:solve(d=0);
(%o14)                              [z = 1/2]
(%i15) multiplicities;
(%o15)                                [1]

Attracting vectors

Because q=2, thus we examine 2-th iteration of f :

(%i16) z1;
(%o16)                              z^2  - z
(%i17) z2:z1^2-z1;
(%o17)                        (z^2  - z)^2  - z^2  + z
(%i18) taylor(z2,z,0,20);
taylor: z = 2 cannot be a variable.
 -- an error. To debug this try: debugmode(true);
(%i19) remvalue(z);
(%o19)                                [z]
(%i20) z;
(%o20)                                 z
(%i21) taylor(z2,z,0,20);
(%o21)/T/                    z - 2 z^3  + z^4  + . . .

Next term after z is a :

so here :

  • degree of above term is k=3
  • number of attracting directions ( and petals) is n= k-1 = 2 ( also n = e*q)
  • the parabolic degeneracy e = n/q = 1
  • coefficient of above term a = -2

Attracing vectore satisfy :

so here :

One can solve it in Maxima CAS :

(%i22)  s:solve(z^2=1/4);
(%o22)                         [z = - 1/2, z =1/2]
(%i23) s:map(rhs,s);
(%o23)                             [-1/2, 1/2]
(%i24) carg_t(z):=
 block(
 [t],
 t:carg(z)/(2*%pi),  /* now in turns */
 if t<0 then t:t+1, /* map from (-1/2,1/2] to [0, 1) */
 return(t)
)$
(%i25)  s:map(carg_t,s);
(%o25)                              [1/2, 0]

So attracting vectors are :

  • from to the origin
  • from to the origin

Critical point z=1/2 lie on attracting vector . Thus critical orbits tend straight to the origin under the iteration[11]

Repelling vectors satisfy :

so here :

One can solve it in Maxima CAS :

(%i26) s:solve(z^2=-1/4);
(%o26)                        [z = - %i/2, z = %i/2]
(%i27) s:map(rhs,s);
(%o27)                            [- %i/2, %i/2 ]
(%i28) s:map(carg_t,s);
(%o28)                              [3/4, 1/4]
Critical orbit for f(z)=z^2 + mz where p over q=1 over 3

First compute parameter of the function :

/* Maxima CAS session */
(%i1) p:1;
      q:3;
      m:exp(2*%pi*%i*p/q);
(%o1) 1
(%o2) 3
(%o3) (sqrt(3)*%i)/2-1/2
(%i9) float(rectform(m));
(%o9) 0.86602540378444*%i-0.5

Then find fixed points :

/* Maxima CAS session */
(%i10) f:z^2+m*z;
(%o10) z^2+((sqrt(3)*%i)/2-1/2)*z
(%i11) z1:f;
(%o11) z^2+((sqrt(3)*%i)/2-1/2)*z
(%i12) solve(z1=z);
(%o12) [z=-(sqrt(3)*%i-3)/2,z=0]
(%i13) multiplicities;
(%o13) [1,1]

Compute multiplier of the fixed point :

(%i23) d:diff(f,z,1);
(%o23) 2*z+(sqrt(3)*%i)/2-1/2

Check stability of fixed points :

(%i12) s:solve(z1=z);
(%o12) [z=-(sqrt(3)*%i-3)/2,z=0]
(%i20) s:map(rectform,s);
(%o20) [3/2-(sqrt(3)*%i)/2,0]
(%i21) s:map('float,s);
(%o21) [1.5-0.86602540378444*%i,0.0]
(%i24) z:s[1];
(%o24) 1.5-0.86602540378444*%i;
(%i31) abs(float(rectform(ev(d))));
(%o31) 2.645751311064591

It means that fixed point z=1.5-0.86602540378444*%i is repelling.

Second point z=0 is parabolic :

(%i33) z:s[2];
(%o33) 0.0
(%i34) abs(float(rectform(ev(d))));
(%o34) 1.0

Find critical point :

(%i1) solve(2*z+(sqrt(3)*%i)/2-1/2);
(%o1) [z=-(sqrt(3)*%i-1)/4]
(%i2) s:solve(2*z+(sqrt(3)*%i)/2-1/2);
(%o2) [z=-(sqrt(3)*%i-1)/4]
(%i3) s:map(rhs,s);
(%o3) [-(sqrt(3)*%i-1)/4]
(%i4) s:map(rectform,s);
(%o4) [1/4-(sqrt(3)*%i)/4]
(%i5) s:map('float,s);
(%o5) [0.25-0.43301270189222*%i]
(%i6) abs(s[1]);
(%o6) 0.5

How to speed up computations ?

Approximate by :

How to compute  :

(%i1) z:x+y*%i;
(%o1) %i*y+x
(%i2) z7:(245.4962434402444*%i-234.5808769813032)*z^8 + z;
(%o2) (245.4962434402444*%i-234.5808769813032)*(%i*y+x)^8+%i*y+x
(%i3) realpart(z7);
(%o3) -234.5808769813032*(y^8-28*x^2*y^6+70*x^4*y^4-28*x^6*y^2+x^8)-245.4962434402444*(-8*x*y^7+56*x^3*y^5-56*x^5*y^3+8*x^7*y)+x
(%i4) imagpart(z7);
(%o4) 245.4962434402444*(y^8-28*x^2*y^6+70*x^4*y^4-28*x^6*y^2+x^8)-234.5808769813032*(-8*x*y^7+56*x^3*y^5-56*x^5*y^3+8*x^7*y)+y

m*z*(1-z)

[edit | edit source]

Description

Critical points

[edit | edit source]

critical points :

  • z = 1/2
  • z = ∞

Parameter plane

[edit | edit source]

period 1 components

[edit | edit source]
(%i1) e1:m*z*(1-z)=z;
(%o1) m*(1-z)*z=z
(%i2) d:diff(m*z*(1-z),z,1);
(%o2) m*(1-z)-m*z
(%i3) e2:d=w;
(%o3) m*(1-z)-m*z=w
(%i4) s:eliminate ([e1,e2], [z]);
(%o4) [m*(m-w)*(w+m-2)]
(%i5) s:solve([s[1]], [m]);
(%o5) [m=2-w,m=w,m=0]

It means that there are 2 period 1 components :

  • discs of radius 1 and centre in 0
  • disc of radius 1 and centre = 2

z(1-mz)

[edit | edit source]

Dynamic plane

[edit | edit source]

"Note that each member of the family of quadratic polynomials


is parabolic since for each λ ∈ C \ {0}, the polynomial gλ has a parabolic fixed point 0 with miltiplicity 2 and the only finite critical point of is given by


which is contained in the basin of 0. The study of this family is too trivial since all its members are conjugate to


via Mobius transformations


and therefore all their Julia sets J(gλ) have the same Hausdorff dimension as

HD(J(z^2 +1/4)) ≈ 1.0812 

"[13]

z(1+ mz)

[edit | edit source]

dynamic plane

[edit | edit source]

z-z^2

[edit | edit source]

Description [14]

First compute m = muliplier of the fixed points = parameter of the function f using internal angle p/q and Maxima CAS:

(%i1) p:1$
(%i2) q:2$
(%i3) m:exp(2*%pi*%i*p/q);
(%o3)                                 - 1

so function f is :

How to compute iteration  ?

Find it using Maxima CAS :

(%i1) z:x+y*%i;
(%o1) %i*y+x
(%i2) z1:z-z^2;
(%o2) −(%i*y+x)^2+%i*y+x
(%i3) realpart(z1);
(%o3) y^2−x^2+x
(%i4) imagpart(z1);
(%o4) y−2*x*y

Then find fixed points of f :

(%i6) remvalue(z);
(%o6) [z]
(%i7) zf:solve(z-z^2=z);
(%o7) [z=0]
(%i9) multiplicities;
(%o9) [2]

Stability of the fixed points :

(%i11) f:z-z^2;
(%o11) z−z^2
(%i12) d:diff(f,z,1);
(%o12) 1−2*z
(%i13) zf:solve(z-z^2=z);
(%o13) [z=0]
(%i14) z:zf[1];
(%o14) z=0
(%i15) abs(ev(d));
(%o15) abs(2*z−1)=1

It means that fixed point z=0 is a parabolic point ( stability indeks = 1 ).

Find critical point  :

(%i16) zcr:solve(d=0);
(%o16) [z=1/2]

References

[edit | edit source]
  1. wikipedia : Complex quadratic polynomial - definition
  2. ON THE NOTIONS OF MATING by CARSTEN LUNDE PETERSEN AND DANIEL MEYER
  3. theknowledgeburrow : what-is-the-difference-between-a-polynomial-and-rational-function
  4. Java program by Dieter Röß showing result of changing initial point of Mandelbrot iterations
  5. Algebraic Geometry of Discrete Dynamics The case of one variable V.Dolotin and A.Morozov
  6. wikipedia : fixed point
  7. wikipedia : multiplier
  8. wikipedia : origin
  9. Michael Yampolsky, Saeed Zakeri : Mating Siegel quadratic polynomials.
  10. images of Cauliflower_Julia_set
  11. Mark McClure in stackexchange questions : what-is-the-shape-of-parabolic-critical-orbit
  12. lambda map at Mu-Ency
  13. REAL ANALYTICITY OF HAUSDORFF DIMENSION OF DISCONNECTED JULIA SETS OF CUBIC PARABOLIC POLYNOMIALS Hasina Akter
  14. S Lapan : On the existence of attracting domains for maps tangent to the identity. Ph.D. Thesis, University of Michigan