Fractals/Iterations of real numbers/r iterations
Dynamics:
- real analytic unimodal dynamics[1]
Diagram types
[edit | edit source]2D diagrams
[edit | edit source]- parameter is a variable on horizontal axis
- bifurcation diagram : P-curves ( = periodic points) versus parameter[2]
- orbit diagram : points of critical orbit versus parameter
- skeleton diagram ( critical curves = q-curves)[3]
- Lyapunow diagram : Lyapunov exponent versus parameter[4]
- multiplier diagrams : multiplier of periodic orbit versus parameter
- constant parameter diagrams
-
orbit diagram
-
critical curves
-
Bifurcation diagram for real quadratic map. Periodic points for periods 1,2,4,and 8 are shown
-
Orbit and Lyapunov diagrams
-
Multiplier diagram
-
Logistic map cobweb and time evolution a=3.2
Transformation
[edit | edit source]Exponential transformation of the parameter axis
-
normal horizontal axis
-
transformed horizontal axis to show period doubling cascade
-
3 windows with non-linear, i.e. logarithmic x-axis scale:
3D diagrams
[edit | edit source]-
An animated cobweb diagram
-
An animated connected scatter diagram
-
Maps
[edit | edit source]- Due to numerical errors different implementations of the same equation can give different trajectories. For example:
r*x*(1-x)
andr*x - r*x*x
- Sensitivity to initial conditions: "small difference in the initial condition will produce large differences in the long-term behaviour of the system. This property is sometimes called the 'butterfly effect'."[13]
Map types
Tent map
[edit | edit source]Orbits of tent map:
-
double precision computation and numerical error
-
increased precision with no error
Logistic map
[edit | edit source]names :
The logistic map[16][17] is defined by a recurrence relation ( difference equation) :
where :
- is a given constant parameter
- is given the initial term
- is subsequent term determined by this relation
Do not confuse it with :
- differential equation ( which gives continous version )
Bash code [18] Javascript code from Khan Academy [19] MATLAB code:
r_values = (2:0.0002:4)';
iterations_per_value = 10;
y = zeros(length(r_values), iterations_per_value);
y0 = 0.5;
y(:,1) = r_values.*y0*(1-y0);
for i = 1:iterations_per_value-1
y(:,i+1) = r_values.*y(:,i).*(1-y(:,i));
end
plot(r_values, y, '.', 'MarkerSize', 1);
grid on;
See also Lasin [20]
Maxima CAS code [21]
/* Logistic diagram by Mario Rodriguez Riotorto using Maxima CAS draw packag */ pts:[]; for r:2.5 while r <= 4.0 step 0.001 do /* min r = 1 */ (x: 0.25, for k:1 thru 1000 do x: r * x * (1-x), /* to remove points from image compute and do not draw it */ for k:1 thru 500 do (x: r * x * (1-x), /* compute and draw it */ pts: cons([r,x], pts))); /* save points to draw it later, re=r, im=x */ load(draw); draw2d( terminal = 'png, file_name = "v", dimensions = [1900,1300], title = "Bifurcation diagram, x[i+1] = r*x[i]*(1 - x[i])", point_type = filled_circle, point_size = 0.2, color = black, points(pts));
explicit solutions
[edit | edit source]The system with r=4 has the explicit solution for the nth iteration :[22]
Precision
[edit | edit source]Numerical Precision in the Chaotic Regime : " the number of digits of precision which must be specified is about 0.6 of the number of iterations. Hence, to determine is x10 000, we need about 6000 digits."
"Hence it is not possible to predict the value of xn for very large n in the chaotic regime." [23]
Better image
[edit | edit source]To show more detaile use tips by User:PAR:
"The horizontal axis is the r parameter, the vertical axis is the x variable. The image was created by forming a 1601 x 1001 array representing increments of 0.001 in r and x. A starting value of x=0.25 was used, and the map was iterated 1000 times in order to stabilize the values of x. 100,000 x -values were then calculated for each value of r and for each x value, the corresponding (x,r) pixel in the image was incremented by one. All values in a column (corresponding to a particular value of r) were then multiplied by the number of non-zero pixels in that column, in order to even out the intensities. Values above 250,000 were set to 250,000, and then the entire image was normalized to 0-255. Finally, pixels for values of r below 3.57 were darkened to increase visibility."
See also :
- tips from learner.org [24]
"The "problem" with pretty much all fractal-type systems, is, that, what happens at the beginning of an actually infinite iterational scheme, is often not descriptive of the long-time limit behaviour. And that's happening with the perturbed Lyapunov exponent from Mario Markus' algorithm as well. If I recall correctly, he states in his 90's article something like "let the x-value settle in". It's similar to the statement "for sufficiently large N" in math papers or in general with convergent series. The actual value of how many skipping iterations one performs, is, however, (at least afaik) just a guess till you're satisfied with the quality of the image. In my images, I could not get rid of those artifacts in full, one example being the UFO image, where vasyan did a great job removing those spots: vasyan's: https://fractalforums.org/index.php?action=gallery;sa=view;id=2388 my version (with spots): https://fractalforums.org/index.php?action=gallery;sa=view;id=1960" marcm200[25]
Lyapunov exponent
[edit | edit source]- code in Matlab[26]
- G. Pastor, M. Romera and F. Montoya, "A revision of the Lyapunov exponent in 1D quadratic maps", Physica D, 107 (1997), 17-22. Preprint
Invariant Measure
[edit | edit source]An invariant measure or probability density in state space [27]
Video on Youtube[28]
Real quadratic map
[edit | edit source]Great images by Chip Ross[29]
For , the code in MATLAB can be written as:
c = (0:0.001:2)';
iterations_per_value = 100;
y = zeros(length(c), iterations_per_value);
y0 = 0;
y(:,1) = y0.^2 - c;
for i = 1:iterations_per_value-1
y(:,i+1) = y(:,i).^2 - c;
end
plot(c, y, '.', 'MarkerSize', 1, 'MarkerEdgeColor', 'black');
Maxima CAS code for drawing real quadratic map : :
/* based on the code by by Mario Rodriguez Riotorto */ pts:[]; for c:-2.0 while c <= 0.25 step 0.001 do (x: 0.0, for k:1 thru 1000 do x: x * x+c, /* to remove points from image compute and do not draw it */ for k:1 thru 500 do (x: x * x+c, /* compute and draw it */ pts: cons([c,x], pts))); /* save points to draw it later, re=r, im=x */ load(draw); draw2d( terminal = 'svg, file_name = "b", dimensions = [1900,1300], title = "Bifurcation diagram, x[i+1] = x[i]*x[i] +c", point_type = filled_circle, point_size = 0.2, color = black, points(pts));
Lyapunov exponent
[edit | edit source]program lapunow;
{ program draws bifurcation diagram y[n+1]=y[n]*y[n]+x,} { blue}
{ x: -2 < x < 0.25 }
{ y: -2 < y < 2 }
{ and Lyapunov exponet for each x { white}
uses crt,graph,
{ modul niestandardowy }
bmpM, {screenCopy}
Grafm;
var xe,xemax,xe0,yemax,i1,i2:integer;
yer,y,x,w,dx,lap:real;
const xmin=-2; { wspolczynnik funkcji fx(y) }
xmax=0.25;
ymax=2;
ymin=-2;
i1max=100; { liczba iteracji }
i2max=20;
lapmax=10;
lapmin=-10;
function wielomian2st(y,x:real) :real;
begin
wielomian2st:=y*y+x;
end; { wielomian2st }
procedure wstep;
begin
opengraf;
randomize; { przygotowanie generatora liczb losowych }
xemax:=getmaxx; { liczba pixeli }
yemax:=getmaxy;
w:=(yemax+1)/(ymax-ymin);
dx:=(xmax-xmin)/(xemax+1);
end;
begin {cialo}
wstep;
for xe:=xemax downTo 0 do
begin {xe}
x:=xmin+xe*dx; { liniowe skalowanie x=a*xe+b }
i1:=0;
i2:=0;
lap:=0;
y:=random; { losowy wybor y0 : 0<y0<1 }
while (abs(y)<ymax) and (i1<i1max)
do
begin {while i1}
y:=wielomian2st(y,x);
i1:=i1+1;
lap:=lap+ln(abs(2*y)+0.1);
if keypressed then halt;
end; {while i1}
while (i2<i2max) and (abs(y)<ymax)
do
begin {while i2}
y:=wielomian2st(y,x);
yer:=(y-ymin)*w; { skalowanie }
putpixel(xe,yemax-round(yer),blue); { diagram bifurkacyjny }
i2:=i2+1;
lap:=lap+ln(abs(2*y)+0.1);
if keypressed then halt;
end; {while i2}
lap:=lap/(i1max+i2max);
yer:=(lap-lapmin)*(yemax+1)/(lapmax-lapmin);
putpixel(xe,yemax-round(yer),white); { wsp Lapunowa }
putpixel(xe,yemax-round(-ymin*w),red); { y=0 }
putpixel(xe,yemax-round((1-ymin)*w),green); { y=1}
end; {xe}
{..... os 0Y .......................................................}
setcolor(red);
xe0:=round((0-Xmin)/dx); {xe0= xe : x=0 }
line(xe0,0,xe0,yemax);
SetColor(red);
OutTextXY(XeMax-50,yemax-round((0-ymin)*w)+10,'y=0 ');
SetColor(blue);
OutTextXY(XeMax-50,yemax-round((1-ymin)*w)+10,'y=1');
{....................................................................}
screenCopy('screen',640,480);
{}
repeat until keypressed;
closegraph;
end.
{ Adam Majewski
Turbo Pascal 7.0 Borland
MS-Dos / Microsoft}
Zoom
[edit | edit source]Cycles
[edit | edit source]Points
[edit | edit source]- Misiurewicz Points
- of the Logistic Map by the J. C. Sprott
- M. Romera, G. Pastor and F. Montoya, "Misiurewicz points in one-dimensional quadratic maps", Physica A, 232 (1996), 517-535
- G. Pastor, M. Romera, G. Álvarez and F. Montoya, "Misiurewicz point patterns generation in one-dimensional quadratic maps", Physica A, 292 (2001), 207-230
- G. Pastor, M. Romera and F. Montoya, "On the calculation of Misiurewicz patterns in one-dimensional quadratic maps" Physica A, 232 (1996), 536-553. Preprint
- Accumulation points
- bifurcation points
Constants
[edit | edit source]Properities
[edit | edit source]self-similarity, scaling and renormalization
[edit | edit source]- Feigenbaums Scaling Law For TheLogistic Map [30]
See also
[edit | edit source]- Geogebra: The Feigenbaum loci Author:a.zampa
- oeis search: logistic map
- Logistic Map by B. L. Badger
- Analytical properties of horizontal visibility graphs in the Feigenbaum scenario Bartolo Luque, Lucas Lacasa, Fernando J. Ballesteros, Alberto Robledo
- The Quadratic Map is Topologically Conjugate to the Shift Map - Gareth Roberts
- Numerical Errors in Logistic Map Calculation J. C. Sprott
- Numbers and Computers by Ronald T. Kneusel, Reviewed by David S. Mazel , on 01/27/2016
- Chaotic Modelling and Simulation Analysis of Chaotic Models, Attractors and Forms Christos H. Skiadas Charilaos Skiadas
- delayed_logistic
- The logistic map revisited Jerzy Ombach, Cracow, Poland
- Structure in the Parameter Dependence of Order and Chaos for the Quadratic Map Brian R. Hunt and Edward Ott
- Windows of periodicity scaling by Evgeny Demidov
- in Webgl by Ricky Reusser
- high-precision-feigenbaum-alpha-calc-using-julia by Stuart Brorson
- Feigenbaum Tree by 3DXM Consortium
- Pascal Yang Hui triangles and power laws_in_the_logistic_map by Carlos Velarde Alberto Robledo
- demonstrations.wolfram : EstimatingTheFeigenbaumConstantFromAOneParameterScalingLaw
- Egwald Mathematics: Nonlinear Dynamics: The Logistic Map and Chaos by Elmer G. Wiens
software
[edit | edit source]- pynamical - Python package for modeling, simulating, visualizing, and animating discrete nonlinear dynamical systems and chaos
- Chaos. Visualizations connecting chaos theory, fractals, and the logistic map! Written by Jonny Hyman, 2020
Videos:
[edit | edit source]- Illustration of Chaotic Systems Using Logistic Map by Zylasable
- Bifurcation Diagram for the Logistic Map Using R by Oxlajuj N'oj
References
[edit | edit source]- ↑ FORTY YEARS OF UNIMODAL DYNAMICS: ON THE OCCASION OF ARTUR AVILA WINNING THE BRIN PRIZE by MIKHAIL LYUBICH
- ↑ Bifurcation and Orbit Diagrams by Chip Ross
- ↑ math.stackexchange question: what-are-the-lines-on-a-bifurcation-diagram ?
- ↑ A revision of the Lyapunov exponent in 1D quadratic maps by Gerardo Pastor, Miguel Romera, Fausto Montoya Vitini. PHYSICA D NONLINEAR PHENOMENA 107(1):17 · AUGUST 1997
- ↑ wiki : Cobweb plot
- ↑ One-Dimensional Dynamical Systems Part 3: Iteration by Hinke Osinga
- ↑ wikipedia : histogram
- ↑ CHAOS THEORY: DEPENDENCE ON PARAMETER R
- ↑ bat-country by xian
- ↑ Power Spectrum of the Logistic Map from wolframmathematica
- ↑ Poincare plot in wikipedia
- ↑ physics.stackexchange question : Poincaré plane and Logistic Map
- ↑ The logistic equation by Didier Gonze
- ↑ May, Robert M. (1976). "Simple mathematical models with very complicated dynamics". Nature. 261 (5560): 459–467. Bibcode:1976Natur.261..459M. doi:10.1038/261459a0. hdl:10338.dmlcz/104555. PMID 934280.
- ↑ Simple mathematical models with very complicated dynamics by R May
- ↑ The Logistic Map and Chaos by Elmer G. Wiens
- ↑ Ausloos, Marcel, Dirickx, Michel (Eds.) : The Logistic Map and the Route to Chaos
- ↑ Logistic map by M.R. Titchener
- ↑ khanacademy ; logistic-map
- ↑ Lasin - Matlab code
- ↑ Logistic diagram by Mario Rodriguez Riotorto using Maxima CAS draw package
- ↑ Double precision errors in the logistic map: Statistical study and dynamical interpretation J. A. Oteo J. Ros
- ↑ The Logistic Map by A. Peter Young
- ↑ earner.org textbook
- ↑ fractalforums.org : what-could-these-artifacts-be-on-my-lyapunov-fractal-renders
- ↑ calculate lyapunov of the logistic map -LASIN
- ↑ Invariant Measure Exercise by James P. Sethna, Christopher R. Myers.
- ↑ Invariant measure of logistic map by todo314
- ↑ Chip Ross : Bifurcation and Orbit diagrams
- ↑ demonstrations from wolfram : FeigenbaumsScalingLawForTheLogisticMap