Fractals/book
Book here means :
- unnamed ( old) c program[1] by Claude Heiland-Allen[2]
- one gui program
- set of the console programs
- book in pdf format about : " how to write a book about the Mandelbrot set ".
- official version
- Here is unofficial version of pdf file ( 68.3 MB )
versions
[edit | edit source]- book console program using stream
- book GUI program is mostly abandoned now.
- It is forked to m-perturbator in the mandelbrot-perturbator repository
- see also libraries:
cli
[edit | edit source]- sh file ( main program
- c file in bin directory
- c and h files in lib directory
Features
[edit | edit source]- zoom with automatic dynamic precision
- free c source code
- uses Newton method to compute :
Plane description
[edit | edit source]Radius is defined as "the difference in imaginary coordinate between the center and the top of the axis-aligned view rectangle". Radius has no initial value.
// / code/bin/mandelbrot_render.c
int retval = 1;
int width = 1280;
int height = 720;
int maximum_iterations = 4096;
long double escape_radius = 512;
mpfr_t radius;
mpfr_init2(radius, 53);
Algorithms
[edit | edit source]Images with full src code :
-
level sets of escape time ( = exterior ) of Mandelbrot set
-
continous escape time
-
atom domains algorithm
- exterior :
- Smooth colouring with continuous escape time
- grid based on integer escape time and binary decomposition
- Atom domains
- external rays : the Newton Method[3]
- boundary : distance estimation ( DEM/M)
- interior :
All algorithms are described in the book : "How To Write A Book About The Mandelbrot Set" by Claude Heiland-Allen[6]
nucleus or center
[edit | edit source]See function mandelbrot_nucleus function from book/code/gui/main.c.[7] It uses Newton method.
Compare with the muatom() function in mightymandel/src/atom.c[8]
Parameter external ray in
[edit | edit source]Code for computing external ray inwards using Newton method, mpfr and gmp library, based on the code from the library External angle is read from the string ( binary fraction)
/*
code is from :
https://code.mathr.co.uk/mandelbrot-book
mandelbrot-book/code/examples/ray-in.sh
mandelbrot-book/code/examples/ray-in.c
mandelbrot-book/code/bin/mandelbrot_external_ray_in.c
mandelbrot-book/code/lib/mandelbrot_external_ray_in.c
mandelbrot-book/code/lib/mandelbrot_external_ray_in.h
mandelbrot-book/code/lib/mandelbrot_external_ray_in_native.c
mandelbrot-book/code/lib/mandelbrot_external_ray_in_native.h
mandelbrot-book/code/lib/mandelbrot_binary_angle.c
mandelbrot-book/code/lib/mandelbrot_binary_angle.h
mandelbrot-book/code/lib/pi.c
mandelbrot-book/code/lib/pi.h
--------------------------------------------------------
gcc r.c -std=c99 -Wall -Wextra -pedantic -lm -lgmp -lmpfr
./a.out
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <complex.h>
#include <gmp.h>
#include <mpfr.h>
#include <stdbool.h>
const float pif = 3.14159265358979323846264338327950288419716939937510f;
const double pi = 3.14159265358979323846264338327950288419716939937510;
const long double pil = 3.14159265358979323846264338327950288419716939937510l;
// ------------------------------------------------------------
struct mandelbrot_binary_angle {
int preperiod;
int period;
char *pre;
char *per;
};
struct mandelbrot_external_ray_in {
mpq_t angle;
mpq_t one;
unsigned int sharpness; // number of steps to take within each dwell band
unsigned int precision; // delta needs this many bits of effective precision
unsigned int accuracy; // epsilon is scaled relative to magnitude of delta
double escape_radius;
mpfr_t epsilon2;
mpfr_t cx;
mpfr_t cy;
unsigned int j;
unsigned int k;
// temporaries
mpfr_t zx, zy, dzx, dzy, ux, uy, vx, vy, ccx, ccy, cccx, cccy;
};
// ----------------------------------------------------------------------------
int depth = 0;
mpq_t angle;
int base = 2; // The base can vary from 2 to 62, or if base is 0 then the leading characters are used: 0x or 0X for hex, 0b or 0B for binary, 0 for octal, or decimal otherwise.
char *s;
struct mandelbrot_binary_angle *a ;
mpfr_t cre, cim;
struct mandelbrot_external_ray_in *ray; // = mandelbrot_external_ray_in_new(angle);
// ----------------------------------------------------------------------------
void mandelbrot_binary_angle_delete(struct mandelbrot_binary_angle *a) {
free(a->pre);
free(a->per);
free(a);
}
// FIXME check canonical form, ie no .01(01) etc.
struct mandelbrot_binary_angle *mandelbrot_binary_angle_from_string(const char *s) {
const char *dot = strchr(s, '.');
if (! dot) { return 0; }
const char *bra = strchr(dot, '(');
if (! bra) { return 0; }
const char *ket = strchr(bra, ')');
if (! ket) { return 0; }
if (s[0] != '.') { return 0; }
if (ket[1] != 0) { return 0; }
struct mandelbrot_binary_angle *a = malloc(sizeof(struct mandelbrot_binary_angle));
a->preperiod = bra - dot - 1;
a->period = ket - bra - 1;
fprintf( stderr , "external angle \n");
fprintf( stderr , "\thas preperiod = %d \t period = %d\n", a->preperiod, a->period);
if (a->period < 1) {
free(a);
return 0;
}
a->pre = malloc(a->preperiod + 1);
a->per = malloc(a->period + 1);
memcpy(a->pre, dot + 1, a->preperiod);
memcpy(a->per, bra + 1, a->period);
a->pre[a->preperiod] = 0;
a->per[a->period] = 0;
for (int i = 0; i < a->preperiod; ++i) {
if (a->pre[i] != '0' && a->pre[i] != '1') {
mandelbrot_binary_angle_delete(a);
return 0;
}
}
for (int i = 0; i < a->period; ++i) {
if (a->per[i] != '0' && a->per[i] != '1') {
mandelbrot_binary_angle_delete(a);
return 0;
}
}
return a;
}
void mandelbrot_binary_angle_to_rational(mpq_t r, const struct mandelbrot_binary_angle *t) {
mpq_t pre, per;
mpq_init(pre);
mpq_init(per);
mpz_set_str(mpq_numref(pre), t->pre, 2);
mpz_set_si(mpq_denref(pre), 1);
mpz_mul_2exp(mpq_denref(pre), mpq_denref(pre), t->preperiod);
mpq_canonicalize(pre);
mpz_set_str(mpq_numref(per), t->per, 2);
mpz_set_si(mpq_denref(per), 1);
mpz_mul_2exp(mpq_denref(per), mpq_denref(per), t->period);
mpz_sub_ui(mpq_denref(per), mpq_denref(per), 1);
mpz_mul_2exp(mpq_denref(per), mpq_denref(per), t->preperiod);
mpq_canonicalize(per);
mpq_add(r, pre, per);
mpq_clear(pre);
mpq_clear(per);
}
// -------------------------------------------------------------
struct mandelbrot_external_ray_in *mandelbrot_external_ray_in_new(mpq_t angle) {
struct mandelbrot_external_ray_in *r = malloc(sizeof(struct mandelbrot_external_ray_in));
mpq_init(r->angle);
mpq_set(r->angle, angle);
mpq_init(r->one);
mpq_set_ui(r->one, 1, 1);
r->sharpness = 4;
r->precision = 4;
r->accuracy = 4;
r->escape_radius = 65536.0;
mpfr_init2(r->epsilon2, 53);
mpfr_set_ui(r->epsilon2, 1, GMP_RNDN);
double a = 2.0 * pi * mpq_get_d(r->angle);
mpfr_init2(r->cx, 53);
mpfr_init2(r->cy, 53);
mpfr_set_d(r->cx, r->escape_radius * cos(a), GMP_RNDN);
mpfr_set_d(r->cy, r->escape_radius * sin(a), GMP_RNDN);
r->k = 0;
r->j = 0;
// initialize temporaries
mpfr_inits2(53, r->zx, r->zy, r->dzx, r->dzy, r->ux, r->uy, r->vx, r->vy, r->ccx, r->ccy, r->cccx, r->cccy, (mpfr_ptr) 0);
return r;
}
int mandelbrot_external_ray_in_step(struct mandelbrot_external_ray_in *r) {
if (r->j >= r->sharpness) {
mpq_mul_2exp(r->angle, r->angle, 1);
if (mpq_cmp_ui(r->angle, 1, 1) >= 0) {
mpq_sub(r->angle, r->angle, r->one);
}
r->k++;
r->j = 0;
}
// r0 <- er ** ((1/2) ** ((j + 0.5)/sharpness))
// t0 <- r0 cis(2 * pi * angle)
double r0 = pow(r->escape_radius, pow(0.5, (r->j + 0.5) / r->sharpness));
double a0 = 2.0 * pi * mpq_get_d(r->angle);
double t0x = r0 * cos(a0);
double t0y = r0 * sin(a0);
// c <- r->c
mpfr_set(r->ccx, r->cx, GMP_RNDN);
mpfr_set(r->ccy, r->cy, GMP_RNDN);
for (unsigned int i = 0; i < 64; ++i) { // FIXME arbitrary limit
// z <- 0
// dz <- 0
mpfr_set_ui(r->zx, 0, GMP_RNDN);
mpfr_set_ui(r->zy, 0, GMP_RNDN);
mpfr_set_ui(r->dzx, 0, GMP_RNDN);
mpfr_set_ui(r->dzy, 0, GMP_RNDN);
// iterate
for (unsigned int p = 0; p <= r->k; ++p) {
// dz <- 2 z dz + 1
mpfr_mul(r->ux, r->zx, r->dzx, GMP_RNDN);
mpfr_mul(r->uy, r->zy, r->dzy, GMP_RNDN);
mpfr_mul(r->vx, r->zx, r->dzy, GMP_RNDN);
mpfr_mul(r->vy, r->zy, r->dzx, GMP_RNDN);
mpfr_sub(r->dzx, r->ux, r->uy, GMP_RNDN);
mpfr_add(r->dzy, r->vx, r->vy, GMP_RNDN);
mpfr_mul_2ui(r->dzx, r->dzx, 1, GMP_RNDN);
mpfr_mul_2ui(r->dzy, r->dzy, 1, GMP_RNDN);
mpfr_add_ui(r->dzx, r->dzx, 1, GMP_RNDN);
// z <- z^2 + c
mpfr_sqr(r->ux, r->zx, GMP_RNDN);
mpfr_sqr(r->uy, r->zy, GMP_RNDN);
mpfr_sub(r->vx, r->ux, r->uy, GMP_RNDN);
mpfr_mul(r->vy, r->zx, r->zy, GMP_RNDN);
mpfr_mul_2ui(r->vy, r->vy, 1, GMP_RNDN);
mpfr_add(r->zx, r->vx, r->ccx, GMP_RNDN);
mpfr_add(r->zy, r->vy, r->ccy, GMP_RNDN);
}
// c' <- c - (z - t0) / dz
mpfr_sqr(r->ux, r->dzx, GMP_RNDN);
mpfr_sqr(r->uy, r->dzy, GMP_RNDN);
mpfr_add(r->vy, r->ux, r->uy, GMP_RNDN);
mpfr_sub_d(r->zx, r->zx, t0x, GMP_RNDN);
mpfr_sub_d(r->zy, r->zy, t0y, GMP_RNDN);
mpfr_mul(r->ux, r->zx, r->dzx, GMP_RNDN);
mpfr_mul(r->uy, r->zy, r->dzy, GMP_RNDN);
mpfr_add(r->vx, r->ux, r->uy, GMP_RNDN);
mpfr_div(r->ux, r->vx, r->vy, GMP_RNDN);
mpfr_sub(r->cccx, r->ccx, r->ux, GMP_RNDN);
mpfr_mul(r->ux, r->zy, r->dzx, GMP_RNDN);
mpfr_mul(r->uy, r->zx, r->dzy, GMP_RNDN);
mpfr_sub(r->vx, r->ux, r->uy, GMP_RNDN);
mpfr_div(r->uy, r->vx, r->vy, GMP_RNDN);
mpfr_sub(r->cccy, r->ccy, r->uy, GMP_RNDN);
// delta^2 = |c' - c|^2
mpfr_sub(r->ux, r->cccx, r->ccx, GMP_RNDN);
mpfr_sub(r->uy, r->cccy, r->ccy, GMP_RNDN);
mpfr_sqr(r->vx, r->ux, GMP_RNDN);
mpfr_sqr(r->vy, r->uy, GMP_RNDN);
mpfr_add(r->ux, r->vx, r->vy, GMP_RNDN);
// enough_bits = 0 < 2 * prec(eps^2) + exponent eps^2 - 2 * precision
int enough_bits = 0 < 2 * (mpfr_get_prec(r->epsilon2) - r->precision) + mpfr_get_exp(r->epsilon2);
if (enough_bits) {
// converged = delta^2 < eps^2
int converged = mpfr_less_p(r->ux, r->epsilon2);
if (converged) {
// eps^2 <- |c' - r->c|^2 >> (2 * accuracy)
mpfr_sub(r->ux, r->cccx, r->cx, GMP_RNDN);
mpfr_sub(r->uy, r->cccy, r->cy, GMP_RNDN);
mpfr_sqr(r->vx, r->ux, GMP_RNDN);
mpfr_sqr(r->vy, r->uy, GMP_RNDN);
mpfr_add(r->ux, r->vx, r->vy, GMP_RNDN);
mpfr_div_2ui(r->epsilon2, r->ux, 2 * r->accuracy, GMP_RNDN);
// j <- j + 1
r->j = r->j + 1;
// r->c <- c'
mpfr_set(r->cx, r->cccx, GMP_RNDN);
mpfr_set(r->cy, r->cccy, GMP_RNDN);
return 1;
}
} else {
// bump precision
mpfr_prec_t prec = mpfr_get_prec(r->cx) + 32;
mpfr_prec_round(r->cx, prec, GMP_RNDN);
mpfr_prec_round(r->cy, prec, GMP_RNDN);
mpfr_prec_round(r->epsilon2, prec, GMP_RNDN);
mpfr_set_prec(r->ccx, prec);
mpfr_set_prec(r->ccy, prec);
mpfr_set_prec(r->cccx, prec);
mpfr_set_prec(r->cccy, prec);
mpfr_set_prec(r->zx, prec);
mpfr_set_prec(r->zy, prec);
mpfr_set_prec(r->dzx, prec);
mpfr_set_prec(r->dzy, prec);
mpfr_set_prec(r->ux, prec);
mpfr_set_prec(r->uy, prec);
mpfr_set_prec(r->vx, prec);
mpfr_set_prec(r->vy, prec);
i = 0;
// c <- r->c
mpfr_set(r->cccx, r->cx, GMP_RNDN);
mpfr_set(r->cccy, r->cy, GMP_RNDN);
}
mpfr_set(r->ccx, r->cccx, GMP_RNDN);
mpfr_set(r->ccy, r->cccy, GMP_RNDN);
}
return 0;
}
void mandelbrot_external_ray_in_get(struct mandelbrot_external_ray_in *r, mpfr_t x, mpfr_t y) {
mpfr_set_prec(x, mpfr_get_prec(r->cx));
mpfr_set(x, r->cx, GMP_RNDN);
mpfr_set_prec(y, mpfr_get_prec(r->cy));
mpfr_set(y, r->cy, GMP_RNDN);
}
void mandelbrot_external_ray_in_delete(struct mandelbrot_external_ray_in *r) {
mpfr_clear(r->epsilon2);
mpfr_clear(r->cx);
mpfr_clear(r->cy);
mpq_clear(r->angle);
mpq_clear(r->one);
mpfr_clears(r->zx, r->zy, r->dzx, r->dzy, r->ux, r->uy, r->vx, r->vy, r->ccx, r->ccy, r->cccx, r->cccy, (mpfr_ptr) 0);
free(r);
}
// -------------------------------------------------------------------------------------------------------
void PrintCInfo (void)
{
fprintf(stderr,"gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is displayed in the console : export OMP_DISPLAY_ENV="TRUE"
fprintf(stderr,"__STDC__ = %d\n", __STDC__);
fprintf(stderr,"__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
fprintf(stderr,"c dialect = ");
switch (__STDC_VERSION__)
{ // the format YYYYMM
case 199409L:
fprintf(stderr,"C94\n");
break;
case 199901L:
fprintf(stderr,"C99\n");
break;
case 201112L:
fprintf(stderr,"C11\n");
break;
case 201710L:
fprintf(stderr,"C18\n");
break;
//default : /* Optional */
}
//gmp_printf (" GMP-%s \n ", gmp_version );
mpfr_printf("Versions: MPFR-%s \n GMP-%s \n", mpfr_version, gmp_version );
}
void PrintInfo(void){
//
fprintf(stderr, "console C program ( CLI ) for computing external ray of Mandelbrot set (parametric ray)\n");
fprintf(stderr, "using Newton method described by Tomoki Kawahira \n");
fprintf(stderr, "tracing inward ( from infinity toward Mandelbrot set) = ray-in\n");
fprintf(stderr, "arbitrary precision (gmp, mpfr) with dynamic precision adjustment.\n Based on the code by Claude Heiland-Allen: https://mathr.co.uk/web/\n");
fprintf(stderr, "usage: ./a.out angle depth\n outputs space-separated complex numbers on stdout\n example command \n./a.out 1/3 25\n or\n ./a.out .(01) 25\n");
fprintf( stderr , "\n");
fprintf( stderr , "\tsharpness = %d\n", ray->sharpness);
fprintf( stderr , "\tprecision = %d\n", ray->precision);
fprintf( stderr , "\taccuracy = %d\n", ray->accuracy);
fprintf( stderr , "\tescape_radius = %.0f\n", ray->escape_radius);
//
PrintCInfo();
}
int setup(void){
// 2 parameters of external ray : depth, angle
depth = 35;
// external angle
s = ".(01)"; // landing point c = -0.750000000000000 +0.000000000000000 i period = 10000
// mpq
mpq_init(angle);
// mpq init from string or 2 integers
a = mandelbrot_binary_angle_from_string(s); // set a from string
// gmp_fprintf (stderr, "\tas a binary fraction = %0b\n", a); // 0b or 0B for binary // not works
if (a) {
mandelbrot_binary_angle_to_rational(angle, a); // convert binary string to decimal rational number
mandelbrot_binary_angle_delete(a); } // use only rational form so delete string form
mpq_canonicalize (angle); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.
gmp_fprintf (stderr, "\tas a decimal rational number = %Qd\n", angle); //
fprintf( stderr , "\tas a formated binary string = 0%s\n", s);
// ---------------------------------------------------
mpfr_init2(cre, 53);
mpfr_init2(cim, 53);
return 0;
}
int compute_ray(mpq_t angle){
ray = mandelbrot_external_ray_in_new(angle);
if (ray ==NULL ){ fprintf(stderr, " ray error \n"); return 1;}
for (int i = 0; i < depth * 4; ++i) { // FIXME 4 = implementation's sharpness
//fprintf( stderr , "i = %d\n", i);
mandelbrot_external_ray_in_step(ray); //fprintf(stderr, " ray step ok \n");
mandelbrot_external_ray_in_get(ray, cre, cim); //fprintf(stderr, " ray get ok \n");
mpfr_out_str(stdout, 10, 0, cre, GMP_RNDN);
putchar(' ');
mpfr_out_str(stdout, 10, 0, cim, GMP_RNDN);
putchar('\n');
}
return 0;
}
int end(void){
PrintInfo();
fprintf(stderr, " allways free memory (deallocate ) to avoid memory leaks \n"); // wikipedia C_dynamic_memory_allocation
mpq_clear (angle);
mpfr_clear(cre);
mpfr_clear(cim);
mandelbrot_external_ray_in_delete(ray);
return 0;
}
int main(void){
setup();
compute_ray(angle);
end();
return 0;
}
instal
[edit | edit source]dependencies
[edit | edit source]- OpenGl
- GL/glew.h ( libglew-dev )
- Gtk ( GUI
sudo apt install mesa-utils sudo apt install libglew-dev sudo apt install freeglut3-dev sudo apt-get install libgtk-3-dev
clone
[edit | edit source]First clone the official git repository :
git clone https://code.mathr.co.uk/mandelbrot-book
or the old one ( deprecated):
git clone http://code.mathr.co.uk/book.git
or you can use unofficial repository :
git clone https://gitlab.com/adammajewski/my-book
make
[edit | edit source]go to the program directory and install :
cd book # or my_book cd code make -C lib make -C bin make cd gui make cd ..
recompile
[edit | edit source]First:
make clean
then make again
First
sudo apt-get install texlive-latex-recommended texlive-latex-extra texlive-fonts-recommended texlive-fonts-extra sudo apt-get install texlive-science
then to make book in pdf format :
- go to book/book directory
- build
cd book make
or use unofficial version with full c code[9]
images
[edit | edit source]https://code.mathr.co.uk/mandelbrot-book-images/
update
[edit | edit source]git
[edit | edit source]From console opened in the mandelbrot-numerics directory :
git pull
If you made some local changes you can undu them :
git checkout -f
then
git pull
Now install again
run
[edit | edit source]There are 2 types of the last versions of book program:
- console
- gui
To run gui program:
# cd gui ./mandelbrot_gui
To run console program use bash scripts, see examples :
./examples/standardview.sh
Examples
[edit | edit source]- for the console programs are bash sh files and use pipeline ( stream)
- for gui version program ( /gui/mandelbrot_gui , see Makefile) reads parameters from the text files
for console program
[edit | edit source]./mandelbrot_render float_type cre cim plane_radius escape_radius "string_file_name" image_width image_heght maximum_iterations interior ./mandelbrot_render 3 -5.7941214880704257e-02 8.1326829943642642e-01 8.1000000737099996e-09 10000 "g" 8000 8000
#!/bin/bash
# Radius is defined as "the difference in imaginary coordinate between the center and the top of the axis-aligned view rectangle".
# https://en.wikibooks.org/wiki/Fractals/Computer_graphic_techniques/2D/plane
#
# in examples directory : chmod +x standardview.sh
# then go to the parent directory : cd ..
# run run these example from the parent directory :
# ./examples/standardview.sh
#
# result :
# ./render using double
# rgba 1.000000 1.000000 1.000000 1.000000
# Image standard.png is saved
# info text file .txt is saved
view="-0.75 0 1.5" # "standard" view of parameter plane : center_re, center_im, radius
#
filename="standard"
pngfilename=$filename".png"
# Heredoc
./render $view && ./colour > out.ppm && ./annotate out.ppm $pngfilename <<EOF
rgba 1 1 1 1
EOF
echo "Image " $pngfilename " is saved"
# info text file
echo "view = re(center) im(center) radius = " $view > $filename".txt"
echo "info text file " $filname".txt is saved"
Extended use :
# Radius is defined as "the difference in imaginary coordinate between the center and the top of the axis-aligned view rectangle".
# https://en.wikibooks.org/wiki/Fractals/Computer_graphic_techniques/2D/plane
#
# in examples directory : chmod +x standardview2.sh
# then go to the parent directory : cd ..
# run run these example from the parent directory :
# ./examples/ian.sh
#
# result :
# ./render using double
# rgba 1.000000 1.000000 1.000000 1.000000
# Image standard.png is saved
# info text file .txt is saved
# from file : / code/bin/mandelbrot_render.c
# int width = 1280;
# int height = 720;
# standard view of parameter plane : center_re, center_im, radius
# plane description : view = center and radius
center_re="-1.86057396001587505"
center_im="-0.00000093437424500"
center="$center_re $center_im"
radius="3.5884751097983668e-09" #$(echo 1.0/$zoom | bc -l) # real radius
view="$center $radius"
# inbits are proportional to zoom
# inbits=$((54+$((4*$zoom))))
# image file names
filename="ian" # filename stem : stem="standard"
ppmfilename=$filename".ppm"
pngfilename=$filename".png"
# escape radius
er="512"
# image size in pixels
w="800"
h="600"
# maximum iterations
n="1500"
# interior rendering
i="1"
# Heredoc
# ./render $view && ./colour "$stem" > "$stem.ppm"
#./render $view "$er" "$filename" "$w" "$h" "$n" "$i" && ./colour "$filename" > "$ppmfilename" && ./annotate "$ppmfilename" $pngfilename <<EOF
#rgba 1 1 1 1
#EOF
echo "Image " $pngfilename " is saved"
# info text file
textfilename=$filename".txt"
ratio=$(echo $w/$h | bc -l)
# http://stackoverflow.com/questions/12882611/how-to-get-bc-to-handle-numbers-in-scientific-aka-exponential-notation
# bash do not use floating point
rim=`echo ${radius} | sed -e 's/[eE]+*/\\*10\\^/'` # conver e to 10
rre=$(echo $ratio*$rim | bc -l) # real radius
cu=$(echo $center_im+$rim | bc -l)
cd=$(echo $center_im-$rim | bc -l)
cl=$(echo $center_re+$rre | bc -l)
cr=$(echo $center_re-$rre | bc -l)
rim="("$rim")" # add () because precedence of operators
zoom=$(echo 1/$rim | bc -l) # zoom = 1/radius
z=$(echo "$zoom" | sed 's/e/*10^/g;s/ /*/' | bc)
echo "part of parameter complex plane " > $textfilename
echo "center of image c = " $center >> $textfilename
echo "radius = (image height/2) = " $rim >> $textfilename
echo "radius = (image height/2) = " $radius >> $textfilename
echo "up corner = center_im+radius = cu =" $cu >> $textfilename
echo "down corner = center_im-radius = cd =" $cd >> $textfilename
echo "left corner = center_re+ratio*radius = cl =" $cl >> $textfilename
echo "right corner = center_im-ratio*radius = cr =" $cr >> $textfilename
echo "image ratio = width/height =" $ratio >> $textfilename
echo "zoom level = fractint mag = "$zoom >>$textfilename
echo "ratio = image width/height = " $ratio >> $textfilename
echo "info text file " $textfilename "is saved"
helper programs
[edit | edit source]period
[edit | edit source]usage :
./mandelbrot_box_period cx cy radius maxperiod
example :
./mandelbrot_box_period 3.06095924635699068e-01 2.37427672737983361e-02 2.0000000000000001e-10 1000
next example :
./mandelbrot_box_period -0.220857943592514 -0.650752006989254 0.0000020 2000 596
If nucleus in not inside rectangle defined by above parameters then returns 0
Compute nucleus
[edit | edit source]usage:
./mandelbrot_nucleu bits cx cy period maxiters
example :
./mandelbrot_nucleus 100 3.06095924635699068e-01 2.37427672737983361e-02 68 1000
angles
[edit | edit source]mandelbrot_external_angles
[edit | edit source]Compute angles of rays landing on the root point,[10] usage:
./mandelbrot_external_angles bits cx cy period
example :
./mandelbrot_external_angles 100 3.06095924635699068e-01 2.37427672737983361e-02 68
New :
./mandelbrot_external_angles 53 -3.9089629378291085e-01 5.8676031775674931e-01 89
result :
.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001) .(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010)
Another :
./mandelbrot_external_angles 100 -1.115234269232491 0.252761823831669 24 .(010110010110010110011001) .(010110010110011001010110)
mandelbrot_describe_external_angle
[edit | edit source]G Pastor gave an example of external rays for which the resolution of the IEEE 754 is not sufficient:[11]
( period 3, lands on root point of period 3 component c3 = -0.125000000000000 +0.649519052838329i )
One can analyze these angles using program by Claude Heiland-Allen :
./bin/mandelbrot_describe_external_angle ".(001)"
binary: .(001)
decimal: 1/7
preperiod: 0
period: 3
./bin/mandelbrot_describe_external_angle
".(001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001010)"
binary:
.(001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001010)
decimal:
33877456965431938318210482471113262183356704085033125021829876006886584214655562/237142198758023568227473377297792835283496928595231875152809132048206089502588927
preperiod: 0
period: 267
./bin/mandelbrot_describe_external_angle
".(001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001010001)"
binary:
.(001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001010001)
decimal:
33877456965431938318210482471113262183356704085033125021829876006886584214655569/237142198758023568227473377297792835283496928595231875152809132048206089502588927
preperiod: 0
period: 267
./bin/mandelbrot_describe_external_angle
".(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001)"
binary:
.(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001)
decimal:
67754913930863876636420964942226524366713408170066250043659752013773168429311121/474284397516047136454946754595585670566993857190463750305618264096412179005177855
preperiod: 0
period: 268
./bin/mandelbrot_describe_external_angle
".(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010)"
binary:
.(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010)
decimal:
67754913930863876636420964942226524366713408170066250043659752013773168429311122/474284397516047136454946754595585670566993857190463750305618264096412179005177855
preperiod: 0
period: 268
Landing points of above rays are roots with angled internal addresses ( description by Claude Heiland-Allen) :
- the upper one will be 1 -> 1/3 -> 3 -> 1/(period/3) -> period because it's the nearest bulb to the lower root cusp of 1/3 bulb and child bulbs of 1/3 bulb have periods 3 * denominator(internal angle) ie, 1 -> 1/3 -> 3 -> 1/89 -> 267
- the lower one will be 1 -> floor(period/3)/period -> period because it's the nearest bulb below the 1/3 cusp ie, 1 -> 89/268 -> 268
- the middle ray .(001) lands at the root of 1 -> 1/3 -> 3, from the cusp on the lower side (which is on the right in a standard unrotated view)
for gui program
[edit | edit source]size 2000 2000 view 53 3.0609592463186358e-01 2.3742767274521188e-02 7.6870929325598169e-11 text 57 3.060959246472445584e-01 2.374276727158354376e-02 272 text 56 3.06095924633099439e-01 2.3742767284688944e-02 204 text 56 3.06095924629285095e-01 2.37427672645622342e-02 204 text 54 3.06095924643046857e-01 2.374276727237906e-02 136 text 54 3.06095924629536442e-01 2.37427672749394494e-02 68 ray_in 2200 .(00000000000100000000000000110000000000000000000000000100000000000001) ray_in 2200 .(00000000000100000000000000101111111111111100000000000010000000000010)
To understand loading parameter files see deserialize function :
static int deserialize(const char *filename) {
FILE *in = fopen(filename, "rb");
if (in) {
while (G.anno) {
GtkTreeIter iter;
gpointer *thing;
gtk_tree_model_get_iter_first(GTK_TREE_MODEL(G.annostore), &iter);
if (gtk_tree_model_iter_next(GTK_TREE_MODEL(G.annostore), &iter)) {
gtk_tree_model_get(GTK_TREE_MODEL(G.annostore), &iter, 1, &thing, -1);
if (thing) {
delete_annotation((struct annotation *) thing);
gtk_tree_store_remove(G.annostore, &iter);
}
}
}
char *line = 0;
size_t linelen = 0;
ssize_t readlen = 0;
while (-1 != (readlen = getline(&line, &linelen, in))) {
if (readlen && line[readlen-1] == '\n') {
line[readlen - 1] = 0;
}
if (0 == strncmp(line, "size ", 5)) {
int w = 0, h = 0;
sscanf(line + 5, "%d %d\n", &w, &h);
// resize_image(w, h); // FIXME TODO make this work...
} else if (0 == strncmp(line, "view ", 5)) {
int p = 53;
int set_result;
char *xs = malloc(readlen);
char *ys = malloc(readlen);
char *rs = malloc(readlen);
sscanf(line + 5, "%d %s %s %s", &p, xs, ys, rs);
struct view *v = view_new();
mpfr_set_prec(v->cx, p);
mpfr_set_prec(v->cy, p);
set_result = mpfr_set_str(v->cx, xs, 0, GMP_RNDN);
set_result = set_result + mpfr_set_str(v->cy, ys, 0, GMP_RNDN);
set_result = set_result + mpfr_set_str(v->radius, rs, 0, GMP_RNDN);
free(xs);
free(ys);
free(rs);
if (set_result < 0) { printf("view line not valid, check chars\n"); return 1; }
start_render(v);
} else if (0 == strncmp(line, "ray_out ", 8)) {
int p = 53;
int set_result;
char *xs = malloc(readlen);
char *ys = malloc(readlen);
sscanf(line + 8, "%d %s %s", &p, xs, ys);
mpfr_t cx, cy;
mpfr_init2(cx, p);
mpfr_init2(cy, p);
set_result = mpfr_set_str(cx, xs, 0, GMP_RNDN);
set_result = set_result + mpfr_set_str(cy, ys, 0, GMP_RNDN);
free(xs);
free(ys);
double x = 0, y = 0;
param_to_screen(&x, &y, cx, cy);
mpfr_clear(cx);
mpfr_clear(cy);
if (set_result < 0) { printf("ray_out line not valid, check chars\n"); return 1; }
start_ray_out(x, y);
} else if (0 == strncmp(line, "ray_in ", 7)) {
int depth = 1000;
char *as = malloc(readlen);
sscanf(line + 7, "%d %s", &depth, as);
struct mandelbrot_binary_angle *angle = mandelbrot_binary_angle_from_string(as);
struct mandelbrot_binary_angle *angle2 = mandelbrot_binary_angle_canonicalize(angle);
mandelbrot_binary_angle_delete(angle);
start_ray_in(angle2, depth);
free(as);
} else if (0 == strncmp(line, "text ", 5)) {
int p = 53;
int set_result;
char *xs = malloc(readlen);
char *ys = malloc(readlen);
char *ss = malloc(readlen);
sscanf(line + 5, "%d %s %s %s", &p, xs, ys, ss);
struct annotation *anno = calloc(1, sizeof(struct annotation));
anno->tag = annotation_text;
anno->label = ss;
mpfr_init2(anno->u.text.x, p);
mpfr_init2(anno->u.text.y, p);
set_result = mpfr_set_str(anno->u.text.x, xs, 0, GMP_RNDN);
set_result = set_result + mpfr_set_str(anno->u.text.y, ys, 0, GMP_RNDN);
free(xs);
free(ys);
if (set_result < 0) {
free(ss);
mpfr_clear(anno->u.text.x);
mpfr_clear(anno->u.text.y);
printf("text line not valid, check chars \n");
return 1;
}
add_annotation(anno);
}
}
free(line);
fclose(in);
return 0;
} else {
return 1;
}
}
ray-out
[edit | edit source]Input format should be of the form:
.pre(period)
e.g.:
.010(110)
Gallery
[edit | edit source]commons category: Fractals created with mandelbrot-book program
use
[edit | edit source]In the gui program box means that user have to mark rectangle ( like nucleus) not to click ( like bond)
Dictionary
[edit | edit source]bulb
[edit | edit source]- component
- Mu-Atom
Bond
[edit | edit source]- touching point
- cur point
- root
"Bond is a " point where two mu-atoms meet. The parent "binds to" the child through the bond, and the two are said to be adjacent. This use of the word 'bond' was introduced by Benoit Mandelbrot in his description of the Mandelbrot set in The Fractal Geometry of Nature." From the Mandelbrot Set Glossary and Encyclopedia, by Robert Munafo, (c) 1987-2015.
In the book program result of computing bond is the internal angle ( = combinatorial rotation number ) of the parent components
dwell
[edit | edit source]"Dwell is a colloquial name for the Representation Function called Escape-Iterations." From the Mandelbrot Set Glossary and Encyclopedia, by Robert Munafo, (c) 1987-2015.
"The dwell bands are the regions of solid color that appear in a standard view of the Mandelbrot Set; they are also called level sets. All points in a dwell band have the same dwell. They are separated from one another by the "contour lines" or lemniscates."
hub
[edit | edit source]- branch type Misiurewicz point
nucleus
[edit | edit source]Nucleus of a Mu-Atom = center of hyperbolic component of Mandelbrot set
"The unique point within any mu-atom which has the property of belonging to its own limit cycle. This point is called the superstable point. This use of the word 'nucleus' was introduced by Benoit Mandelbrot in his description of the Mandelbrot set in The Fractal Geometry of Nature. If you set the polynomial formula for a lemniscate ZN equal to zero and solve for C (to get the roots of the polynomial), the roots are the nuclei of the mu-atoms of period N, plus any mu-atoms of periods that divide evenly into N. This procedure has been used numerically by Jay Hill to find all mu-atoms for periods up to about 16." From the Mandelbrot Set Glossary and Encyclopedia, by Robert Munafo, (c) 1987-2015.
Finding nucleus
A nucleus n of period p is a point of parameter plane
which satisfies :
where :
Claude is using Newton's method in one variable to compute c=n
Partials
[edit | edit source]- good guesses for the period of hyperbolic component (enclosed by atom domain) of c are the partials, namely the values of p for which |fpc(0)| reach a new minimum.
- the partials, namely the values of p for which |fpc(0)| reach a new minimum. It is related with the interior distance[12]
- "partials" are the iterations p where |z_p| is smaller than all previous |z_n|. They are good candidates for possible periods.
- "Partials" is my term for the set of n with 0 < n such that |z_n| < |z_m| for all 0 < m < n, where z_{n+1} = z_n^2 + c, z_0 = 0. This is related to "atom period domain" colouring: http://mrob.com/pub/muency/atomdomain.html
- A different way is to check that z_p is near zero, rather than z_{p+1} is near c. They have the same effect in the end, but it's a little easier to calculate.
A few examples:
-9.82053364278e-2 + 0.87751161636 i is the center of a bulb with period 30 and approximate size 8.7e-4 its partials are 1 3 6 12 30
-1.40107054826248 + 1.68078322683058e-2 i is the center of a cardioid with period 25 and approximate size 2.9e-7 its partials are 1 2 4 8 25
-6.30751837180080329933379814864882594423413629277790243935409e-02 + 9.97813152226579778761450011018468925066022924931316287706002e-01 i is the center of a cardioid with period 660 and approximate size 1e-51 its partials are 1 3 4 5 12 34 133 660
-1.949583466095265215576424927006606703613013182307914337344552997126238598475224082315026579e+00 + -7.76868505224924928703440073040924718407938044210292978384443422263629366944037056031909997e-06 i is the center of a cardioid with period 1820 and approximate size 3.5e-83 its partials are 1 2 3 4 9 25 83 359 1820
// gcc -std=c99 -Wall -Wextra -pedantic -O3 -o partials partials.c -lm
// ./partials re im
// http://www.fractalforums.com/help-and-support/period-detection-for-dummies/?topicseen
#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv)
{
if (argc != 3)
{
fprintf(stderr, "usage: %s re im\n", argv[0]);
return 1;
}
double re = atof(argv[1]);
double im = atof(argv[2]);
double _Complex c = re + im * I;
double _Complex z = 0;
double minimum = 1.0 / 0.0; // infninity
printf(" n z |z| min\n");
for (int n = 1; n < 100; ++n)
{
z = z * z + c;
double absz = cabs(z);
printf("%4d %+.18f + %+.18f i %+.18f", n, creal(z), cimag(z), absz);
if (absz < minimum)
{
minimum = absz;
printf(" ****");
}
printf("\n");
}
return 0;
}
Example output :
./partials -0.509 0.576
n z |z| min
1 -0.509000000000000008 + +0.575999999999999956 i +0.768672231838772757 ****
2 -0.581694999999999962 + -0.010368000000000044 i +0.581787391105204277 ****
3 -0.170738422399000056 + +0.588062027520000030 i +0.612346762132562117
4 -0.825665339327633863 + +0.375190434296955644 i +0.906912958643195766
5 +0.031955390579078591 + -0.043563474492556487 i +0.054027060783695097 ****
6 -0.509876629322802200 + +0.573215824315217226 i +0.767170488467169953
7 -0.577602204115791773 + -0.008538704752669046 i +0.577665314588191370
8 -0.175448603279432458 + +0.585863949370871162 i +0.611570747800398218
9 -0.821454354779731055 + +0.370421976742216996 i +0.901110258425790955
10 +0.028574816132972747 + -0.032569491802020845 i +0.043327726841770761 ****
11 -0.509244251679208726 + +0.574138665520425695 i +0.767440496138881434
12 -0.579305499377257949 + -0.008753630166097426 i +0.579371631726838143
13 -0.173481764432350638 + +0.586142052189469798 i +0.611276065240121014
14 -0.822466582754321607 + +0.372630085156343605 i +0.902942113377815159
15 +0.028598099383947528 + -0.036951585539979570 i +0.046725485147749588
16 -0.509547568385544269 + +0.573886509768666397 i +0.767453223683425945
17 -0.578707001646840746 + -0.008844951163781811 i +0.578774590765840591
18 -0.174176439406013128 + +0.586237270335409733 i +0.611564852795244307
19 -0.822336705086155639 + +0.371782559211755903 i +0.902474336402979138
20 +0.029015385197912136 + -0.035460889501387816 i +0.045818852696383125
final ...
[edit | edit source]- final_n = last iteration = n when z escapes
- final_z = last z
- final angle = angle of last z
int final_n; // last iteration
complex float final_z; //
if (cabs2(z) > escape_radius2) {
final_n = n;
final_z = z; }
spoke
[edit | edit source]spoke = branch of the tree , arm of dendritic structure
wucleus
[edit | edit source]Periodic point z = wucleus
A wucleus w of a point c within a hyperbolic component of period p satisfies :
where
so w is a point from dynamic plane ( z-plane)
How to contribute ?
[edit | edit source]git add book.pdf book.tex code/*.c git commit -m "description" git format-patch origin/master
and send patch to Claude by e-mail.
gcc render.c -E -o 26render.c remove some code manually add include
References
[edit | edit source]- ↑ c program by Claude Heiland-Allen
- ↑ Claude Heiland-Allen - blog
- ↑ An algorithm to draw external rays of the Mandelbrot set by Tomoki KAWAHIRA
- ↑ Interior coordinates in the Mandelbrot set
- ↑ Modified Atom Domains
- ↑ Mandelbrot Notebook
- ↑ book/code/gui/main.c
- ↑ mightymandel/src/atom.c code
- ↑ unofficial version ( with full c code ) of book "How to write a book about the Mandelbrot set" by by Claude Heiland-Allen
- ↑ Automatically finding external angles by Claude Heiland-Allen
- ↑ A Method to Solve the Limitations in Drawing External Rays of the Mandelbrot Set M. Romera,1 G. Pastor, A. B. Orue,1 A. Martin, M.-F. Danca,and F. Montoya
- ↑ Practical interior distance rendering by Claude Heiland-Allen