Jump to content

Fractals/ultrafractal

From Wikibooks, open books for an open world

UltraFractal is a program by Frederik Slijkerman. This is unofficial wiki about it.

licence

[edit | edit source]

Copyright © 1997-2017 Frederik Slijkerman

install

[edit | edit source]

Linux

[edit | edit source]

use wine

  • file types[1]
  • Fractal Forum [2]

formula

[edit | edit source]

outside coloring

[edit | edit source]

TwinLamps or Standart Exp smoothing

[edit | edit source]
TwinLamps {
; Standart Exp smoothing (invented by Ron Barnet code taken from Damien M. Jones)
; divided by fractal dimension statistics (from Kerry Mitchell).
; Tried to make universal algorithm and  showing features
; of fractal and not of colour method. Goes with mandelbrots,
; patterns and julias, but not so with newton fractals.
; by Edgars Malinovskis 17.01.2012
; Removed bug creating no colour spots. 23.02.1012


init:
float sum = 0.0
float zmin=1e20
float zmax=-1
float cabsz=0.0
float lnz=0.0

loop:

cabsz= cabs(#z+@posneg)


	lnz=exp(-cabsz)
	

;finding min and max z.
IF (lnz < zmin)
zmin = lnz
ENDIF
IF (lnz > zmax)
zmax = lnz
ENDIF

;exp smoothing
sum= sum + lnz


final:
;dividing exponent smooth value by fractal dimension value

#index=sqrt(sum)/(1+zmax-zmin)
  		
default:
title = "TwinLamps"

	param posneg
	caption = "Add to pixel value"
	default =  (0.0, 0.0)
	hint = "The same as trap center.\
	Adding number diverses negative Z areas\
	and marks -n with dots."
	endparam

}


DistanceEstimator(OUTSIDE) {
;
; Distance-estimator coloring algorithm for Mandelbrot and
; other z^n fractal types (Phoenix, Julia). This coloring
; algorithm estimates the distance to the boundary of the
; fractal (for example the Mandelbrot set) and colors points
; accordingly.
;
; Written by Damien M. Jones
;
init:
  complex dz = (0,0)
loop:
  dz = @power * #z^(@power-1) * dz + 1
final:
  #index = (@power*log(cabs(#z)) * cabs(#z) / cabs(dz))^(1/@power)
default:
  title = "Distance Estimator"
  helpfile = "Uf*.chm"
  helptopic = "Html/coloring/standard/distanceestimator.html"
  param power
    caption = "Exponent"
    default = 2.0
    hint = "This should be set to match the exponent of the \
            formula you are using. For Mandelbrot, this is usually 2."
  endparam
}

ExponentialSmoothing

[edit | edit source]


ExponentialSmoothing {
; from Standard.ucl
; This coloring method provides smooth iteration
; colors for all fractal types, convergent or
; divergent (or both).  It combines the two methods
; developed by Ron Barnett.  It doesn't map
; precisely to iterations, but it's close.
;
; Written by Damien M. Jones
;
init:
  float sum = 0.0
  float sum2 = 0.0
  complex zold = (0,0)
  
loop:
  IF (@diverge)
    sum = sum + exp(-cabs(#z))
  ENDIF
  IF (@converge)
    sum2 = sum2 + exp(-1/cabs(zold-#z))
  ENDIF
  zold = #z

final:
  IF (|#z - zold| < 0.5)	; convergent bailout.
    IF (@converge)
      #index = sum2
    ELSE
      #index = 0
    ENDIF
    
  ELSE				; divergent bailout.
    IF (@diverge)
      #index = sum * @divergescale
    ELSE
      #index = 0
    ENDIF
  ENDIF
  
default:
  title = "Exponential Smoothing"
  helpfile = "Uf*.chm"
  helptopic = "Html/coloring/standard/exponentialsmoothing.html"
$IFDEF VER50
  rating = recommended
$ENDIF

  param diverge
    caption = "Color Divergent"
    default = FALSE
    hint = "If checked, points which escape to infinity will be \
            colored."
  endparam
  param converge
    caption = "Color Convergent"
    default = TRUE
    hint = "If checked, points which collapse to one value will be \
            colored."
  endparam
  param divergescale
    caption = "Divergent Density"
    default = 1.0
$IFDEF VER40
    exponential = true
$ENDIF
    hint = "Sets the divergent coloring density, relative to the \
            convergent coloring. If set to 1.0, they will use \
       	    the same color density."
  endparam
}

smooth

[edit | edit source]
Smooth(OUTSIDE) {
; from Standard.ucl
; This coloring method provides smooth iteration
; colors for Mandelbrot and other z^2 formula types
; (Phoenix, Julia).  Results on other types may be
; unpredictable, but might be interesting.
;
; Thanks to F. Slijkerman for some tweaks.
; Thanks to Linas Vepstas for the math.
;
; Written by Damien M. Jones
;
init:
  complex il = 1/log(@power)		; Inverse log (power).
  float lp = log(log(@bailout))		; log(log bailout).

final:
  #index = 0.05 * real(#numiter + il*lp - il*log(log(cabs(#z))))

default:
  title = "Smooth (Mandelbrot)"
  helpfile = "Uf*.chm"
  helptopic = "Html/coloring/standard/smooth.html"
$IFDEF VER50
  rating = recommended
$ENDIF

  param power
    caption = "Exponent"
    default = (2,0)
    hint = "This should be set to match the exponent of the \
            formula you are using. For Mandelbrot, this is usually 2."
  endparam
  param bailout
    caption = "Bail-out value"
    default = 128.0
    min = 1
    hint = "This should be set to match the bail-out value in \
            the Formula tab. This formula works best with bail-out \
            values higher than 100."
  endparam
}

binary decomposition

[edit | edit source]
comment {

  This file contains standard coloring algorithms for Ultra Fractal 3.
  Many of the coloring algorithms here were written by other formula
  authors, as noted in the comments with each formula. All formulas
  have been edited and simplified by Frederik Slijkerman.
  
}

BinaryDecomposition {
; from standard.ucl
; Classic binary decomposition. Can give quite abstract effects.
; Use low bail-out values in the fractal formula (if possible) for
; best effects. This coloring algorithm uses just two colors from
; the gradient: one from the left end and one from the middle.
;
final:
  if @type == "Type 1"
    if real(#z) * imag(#z) >= 0 
      #index = 0.5
    else
      #index = 0
    endif
  else
    if atan2(#z) > 0
      #index = 0.5
    else
      #index = 0
    endif
  endif  
default:
  title = "Binary Decomposition"
  helpfile = "Uf3.chm"
  helptopic = "Html/coloring/standard/binarydecomposition.html"
  param type
    caption = "Decomposition Type"
    enum = "Type 1" "Type 2"
    default = 0
    hint = "Toggles between two types of binary decomposition. Type 2 \
            reproduces the coloring used with many images in the classic \
            Beauty of Fractals book."
  endparam
}

slope

[edit | edit source]
// http://www.fractalforums.com/mandel-machine/maybe-perturbation-could-go-with-a-slope/	
	
mbrot2_slope {
fractal:
  title="mbrot2_slope" width=1024 height=400 layers=1
  credits="Alef;12/4/2014;Frederik;7/23/2010"
layer:
  caption="Background" opacity=100
mapping:
  center=-0.61777095064903/0.6790465094562 magn=19180.711
  angle=156.5545
formula:
  maxiter=1000 filename="Standard.ufm" entry="SlopeMandel" p_start=0/0
  p_power=2/0 p_bailout=1.0E20 p_offset=0.000000000000001
  p_zmode=potential p_xfer=linear p_zscale=1.0 p_zscale2=0.005
  p_everyiter=no
inside:
  transfer=none
outside:
  transfer=linear filename="Standard.ucl" entry="Decomposition"
gradient:
  comments="slightly changed standart. IMHO good sky." smooth=no
  rotation=1 index=0 color=6303744 index=64 color=12085789 index=168
  color=16777197 index=257 color=33023 index=343 color=512
opacity:
  smooth=no index=0 opacity=255
}


mbrot3_slope {
; copyright Kerry Mitchell 15sep98
;  
; sample image to illustrate
; embossing effect
fractal:
  title="mbrot3_slope" width=1024 height=512 layers=1
  credits="Alef;12/4/2014;Kerry Mitchell;9/15/1998"
layer:
  caption="Layer 1" opacity=100 method=linear
mapping:
  center=-0.81810721128409/0.19884197484006 magn=4118.0018
  angle=34.1619
formula:
  maxiter=1000 percheck=off filename="Standard.ufm"
  entry="SlopeMandel" p_start=0/0 p_power=2/0 p_bailout=1.0E20
  p_offset=0.000000000000001 p_zmode="distance estimator"
  p_xfer=linear p_zscale=1.0 p_zscale2=0.005 p_everyiter=no
inside:
  transfer=none
outside:
  transfer=linear filename="Standard.ucl" entry="Decomposition"
gradient:
  comments="slightly changed standart. IMHO good sky." smooth=no
  rotation=1 index=0 color=6303744 index=64 color=12085789 index=168
  color=16777197 index=257 color=33023 index=343 color=512
opacity:
  smooth=no index=0 opacity=255
} 

field lines

[edit | edit source]

"There's a later version of my formula for field lines - though somewhat extended to include smooth iteration, distance estimation and distance estimation angles in my class formulas for UF - mmf.ulb called "MMF Field Estimator" It's a UF class formula so not quite so easy to follow but I think it should be clear enough. I boiled down "corrections" to field lines that work in most places but at the moment require manual adjustment to work properly - these are the two parameters that can be modified by the user to fix errors in the field lines, unfortunately you can't always fix them everywhere in view even then but this is about as close as you can get I think. I tried including the MMF Field Lines code here but unfortunately it's too long, it's in mmf.ulb in te Ultra Fractal Formula database at: http://formulas.ultrafractal.com/ " David Makin

MMF3-FieldLines {
;
; This version of calculating field lines will work reasonably well with both
; Mandelbrot and Julia Sets for divergent fractals with a divergence that is
; close to being a positive integer >=2 but can also produce quite interesting
; results with fractals that do not fit that criteria - just not rendering the
; field lines correctly in other cases :-)
;
; Thanks to Chris Hayton for showing me how to fix the "off-by-one" problems.
;  http://www.fractalforums.com/programming/smooth-external-angle-of-mandelbrot-set/
; David Makin
; Here's my code from mmf3.ucl for Ultra Fractal:
; 
global:
  float twopi = 2.0*#pi
  float dtwopi = 0.5/#pi
  float dp = 1.0/@power
  float m = @power*dtwopi
  float dp2 = 1.0/(2.0+@power) ; Changed from originally trying 1/power
init:
  complex zv[#maxiter]
  int i = 0
  float a = 0.0
  float b = 0.0
  float c = 0.0
  float s = 0.0
  if @julia
    zv[i] = #z
    i = i + 1
  endif
loop:
  zv[i] = #z
  i = i + 1
final:
  if (s = atan2(#z))<0
    s = s + twopi
  endif
  while i > @skipiter
    i = i - 1
    if @version==0
      b = (@power*atan2(zv[i]))%twopi
    else
      b = atan2(zv[i]^@power)
    endif
    if b < 0.0
      b = b + twopi
    endif
    c = c + b - s
    if c >= #pi
      s = s + twopi
      if @fixit || @accident
        c = c - twopi
      endif
    elseif c < -#pi
      s = s - twopi
      if @fixit || @accident
        c = c + twopi
      endif
    endif
    if @fixit
      c = dp2*c
    elseif !@accident
      c = 0.0
    endif
    if (a = atan2(zv[i])) < 0.0
      a = a + twopi
    endif
    s = dp*(s + twopi*floor(a*m))
  endwhile
  s = s*dtwopi
  if @fixskip
    while s<0.0
      s = s + 1.0
    endwhile
    while s>=1.0
      s = s - 1.0
    endwhile
  endif
  #index = s
default:
  title = "MMF3 Field Lines (use high bailouts)"
  heading
    caption = "Information"
;    text = "This colouring is a little touchy around certain values, if you \
;            get obvious lines or dots that shouldn't be there but the 'Degree \
;            of Divergence' is set properly for the main formula and you are \
;            using a high bailout of say 1e20 or higher then try \
;            adjusting the location very slightly. For example if vertical \
;            lines appear on an unrotated fractal then try changing the x \
;            (real) location very slightly, if horizontal lines appear then try \
;            changing the y (imag) location very slightly."
  endheading
  heading
  endheading
  param version
    caption = "Version"
    enum = "Original" "Alternative"
    default = 1
    hint = "Allows you to modify one of the calculations in the formula that \
            is particularly sensitive to small errors. Ideally both methods \
            should produce identical results but they don't, so if you get \
            visible errors using one method then try the other (assuming you \
            have the divergence set correctly and are using a high bailout)."
  endparam
  param power
    caption = "Degree of divergence"
    default = 2.0
    hint = "This is an estimate of the divergence of the main formula, e.g. 2 \
            for z^2+c, 3 for z^3+c etc."
  endparam
  param julia
    caption = "Julia ?"
    default = false
    hint = "Enable for correct rendering of Julia Sets."
  endparam
  param skipiter
    caption = "'Start' iteration"
    default = 0
    min = 0
    hint = "You can use this to attempt to get better detail at higher \
            iteration depths, note that it only works as intended with 'Color \
            Density' as a whole integer >=1."
  endparam
  param fixskip
    caption = "Fix 'Start' iteration"
    default = false
    hint = "Fixes a problem when the start iteration is non-zero and maybe in \
            other cases - specifically if you get solid areas of palette \
            colour zero when the Transfer Function is Linear this may fix the \
            problem."
  endparam
  param fixit
    caption = "Fix Field Lines"
    default = false
    hint = "Enable this to make the formula much more accurate at rendering \
            the field lines correctly. It's a fudge produced after trial and \
            error but is quite effective at correcting some areas."
  endparam
  param accident
    caption = "Happy Accident"
    default = false
    hint = "You may find the colouring useful when this is enabled. This \
            is available as I found the results when initially adding the \
            'Fix it' option quite interesting."
    visible = !@fixit
  endparam
}

multiwave

[edit | edit source]

Gradient file by Pauldebrot [3]

MandelMultiwave {
global:
  color c2x0 = hsl(0,0.5,0.5 + @lmag/2)
  color c2x1 = hsl(0,0.5,0.5)
  color c2x2 = hsl(0,0.5,0.5 - @lmag/2)
  color c2x3 = hsl(0,0.5,0.5)
  color c3x0 = hsl(0,0.5,0.5 + @lmag2/2)
  color c3x1 = hsl(0,0.5,0.5)
  color c3x2 = hsl(0,0.5,0.5 - @lmag2/2)
  color c3x3 = hsl(0,0.5,0.5)
  color c4x0 = hsl(0,0.5,0.5 + @lmag3/2)
  color c4x1 = hsl(0,0.5,0.5)
  color c4x2 = hsl(0,0.5,0.5 - @lmag3/2)
  color c4x3 = hsl(0,0.5,0.5)
  color c5x0 = hsl(0,0.5,0.5)
  color c5x1 = hsl(0,0.5,0.5 - @lmag4/2)
  color c5x2 = hsl(0,0.5,0.5)
  color c5x3 = hsl(0,0.5,0.5 + @lmag4/2)
init:
  complex il = 1/log(@power)		; Inverse log (power).
  float lp = log(log(@bailout))		; log(log bailout).
final:
  float i = real(#numiter + il*lp - il*log(log(cabs(#z)))) + @displacement
  IF (i < 1)
    i = 1
  ENDIF
  i = (i - 1)*@rescale + 1
  float ix = (i - 1)/@hfreq2
  ix = ix - trunc(ix)
  color c1a
  color c1b
  color c1c
  color c1d
  color c2a
  color c2b
  color c2c
  color c2d
  color c3a
  color c3b
  color c3c
  color c3d
  color c4a
  color c4b
  color c4c
  color c4d
  IF (ix < 1/5)
    ix = ix*5
    c1a = @c1e
    c1b = @c1a
    c1c = @c1b
    c1d = @c1c
    c2a = @c2e
    c2b = @c2a
    c2c = @c2b
    c2d = @c2c
    c3a = @c3e
    c3b = @c3a
    c3c = @c3b
    c3d = @c3c
    c4a = @c4e
    c4b = @c4a
    c4c = @c4b
    c4d = @c4c
  ELSEIF (ix < 2/5)
    ix = (ix - 1/5)*5
    c1a = @c1a
    c1b = @c1b
    c1c = @c1c
    c1d = @c1d
    c2a = @c2a
    c2b = @c2b
    c2c = @c2c
    c2d = @c2d
    c3a = @c3a
    c3b = @c3b
    c3c = @c3c
    c3d = @c3d
    c4a = @c4a
    c4b = @c4b
    c4c = @c4c
    c4d = @c4d
  ELSEIF (ix < 3/5)
    ix = (ix - 2/5)*5
    c1a = @c1b
    c1b = @c1c
    c1c = @c1d
    c1d = @c1e
    c2a = @c2b
    c2b = @c2c
    c2c = @c2d
    c2d = @c2e
    c3a = @c3b
    c3b = @c3c
    c3c = @c3d
    c3d = @c3e
    c4a = @c4b
    c4b = @c4c
    c4c = @c4d
    c4d = @c4e
  ELSEIF (ix < 4/5)
    ix = (ix - 3/5)*5
    c1a = @c1c
    c1b = @c1d
    c1c = @c1e
    c1d = @c1a
    c2a = @c2c
    c2b = @c2d
    c2c = @c2e
    c2d = @c2a
    c3a = @c3c
    c3b = @c3d
    c3c = @c3e
    c3d = @c3a
    c4a = @c4c
    c4b = @c4d
    c4c = @c4e
    c4d = @c4a
  ELSE
    ix = (ix - 4/5)*5
    c1a = @c1d
    c1b = @c1e
    c1c = @c1a
    c1d = @c1b
    c2a = @c2d
    c2b = @c2e
    c2c = @c2a
    c2d = @c2b
    c3a = @c3d
    c3b = @c3e
    c3c = @c3a
    c3d = @c3b
    c4a = @c4d
    c4b = @c4e
    c4c = @c4a
    c4d = @c4b
  ENDIF
  float rp0 = red(c1b)
  float gp0 = green(c1b)
  float bp0 = blue(c1b)
  float rm0 = (red(c1c) - red(c1a))/2
  float gm0 = (green(c1c) - green(c1a))/2
  float bm0 = (blue(c1c) - blue(c1a))/2
  float rp1 = red(c1c)
  float gp1 = green(c1c)
  float bp1 = blue(c1c)
  float rm1 = (red(c1d) - red(c1b))/2
  float gm1 = (green(c1d) - green(c1b))/2
  float bm1 = (blue(c1d) - blue(c1b))/2
  float ixt2 = ix^2
  float ixt3 = ix^3
  float ixa = 2*ixt3 - 3*ixt2 + 1
  float ixb = ixt3 - 2*ixt2 + ix
  float ixc = -2*ixt3 + 3*ixt2
  float ixd = ixt3 - ixt2
  float rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  float ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  float bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  color c1 = rgb(rrr,ggg,bbb)
  rp0 = red(c2b)
  gp0 = green(c2b)
  bp0 = blue(c2b)
  rm0 = (red(c2c) - red(c2a))/2
  gm0 = (green(c2c) - green(c2a))/2
  bm0 = (blue(c2c) - blue(c2a))/2
  rp1 = red(c2c)
  gp1 = green(c2c)
  bp1 = blue(c2c)
  rm1 = (red(c2d) - red(c2b))/2
  gm1 = (green(c2d) - green(c2b))/2
  bm1 = (blue(c2d) - blue(c2b))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  color c2 = rgb(rrr,ggg,bbb)
  rp0 = red(c3b)
  gp0 = green(c3b)
  bp0 = blue(c3b)
  rm0 = (red(c3c) - red(c3a))/2
  gm0 = (green(c3c) - green(c3a))/2
  bm0 = (blue(c3c) - blue(c3a))/2
  rp1 = red(c3c)
  gp1 = green(c3c)
  bp1 = blue(c3c)
  rm1 = (red(c3d) - red(c3b))/2
  gm1 = (green(c3d) - green(c3b))/2
  bm1 = (blue(c3d) - blue(c3b))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  color c3 = rgb(rrr,ggg,bbb)
  rp0 = red(c4b)
  gp0 = green(c4b)
  bp0 = blue(c4b)
  rm0 = (red(c4c) - red(c4a))/2
  gm0 = (green(c4c) - green(c4a))/2
  bm0 = (blue(c4c) - blue(c4a))/2
  rp1 = red(c4c)
  gp1 = green(c4c)
  bp1 = blue(c4c)
  rm1 = (red(c4d) - red(c4b))/2
  gm1 = (green(c4d) - green(c4b))/2
  bm1 = (blue(c4d) - blue(c4b))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  color c4 = rgb(rrr,ggg,bbb)
  ix = (i - 1)/@hfreq1
  ix = ix - trunc(ix)
  color ca
  color cb
  color cc
  color cd
  IF (ix < 1/4)
    ix = ix*4
    ca = c4
    cb = c1
    cc = c2
    cd = c3
  ELSEIF (ix < 1/2)
    ix = (ix - 1/4)*4
    ca = c1
    cb = c2
    cc = c3
    cd = c4
  ELSEIF (ix < 3/4)
    ix = (ix - 1/2)*4
    ca = c2
    cb = c3
    cc = c4
    cd = c1
  ELSE
    ix = (ix - 3/4)*4
    ca = c3
    cb = c4
    cc = c1
    cd = c2
  ENDIF
  rp0 = red(cb)
  gp0 = green(cb)
  bp0 = blue(cb)
  rm0 = (red(cc) - red(ca))/2
  gm0 = (green(cc) - green(ca))/2
  bm0 = (blue(cc) - blue(ca))/2
  rp1 = red(cc)
  gp1 = green(cc)
  bp1 = blue(cc)
  rm1 = (red(cd) - red(cb))/2
  gm1 = (green(cd) - green(cb))/2
  bm1 = (blue(cd) - blue(cb))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  c2 = rgb(rrr,ggg,bbb)
  ix = (i - 1)/@sfreq
  ix = ix - trunc(ix)
  IF (ix < 1/3)
    ix = ix*3
    ca = @cz
    cb = @cx
    cc = @cy
    cd = @cz
  ELSEIF (ix < 2/3)
    ix = (ix - 1/3)*3
    ca = @cx
    cb = @cy
    cc = @cz
    cd = @cx
  ELSE
    ix = (ix - 2/3)*3
    ca = @cy
    cb = @cz
    cc = @cx
    cd = @cy
  ENDIF
  rp0 = red(cb)
  gp0 = green(cb)
  bp0 = blue(cb)
  rm0 = (red(cc) - red(ca))/2
  gm0 = (green(cc) - green(ca))/2
  bm0 = (blue(cc) - blue(ca))/2
  rp1 = red(cc)
  gp1 = green(cc)
  bp1 = blue(cc)
  rm1 = (red(cd) - red(cb))/2
  gm1 = (green(cd) - green(cb))/2
  bm1 = (blue(cd) - blue(cb))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  c3 = rgb(rrr,ggg,bbb)
  float hh = hue(c2)
  float ss = sat(c2)
  float ll = lum(c2)
  IF (ll != 1.0 && lum(c3) != 1.0)
      ll = 1 - 1/((1/(1 - ll) - 1)*(1/(1 - lum(c3)) - 1) + 1)
  ENDIF
  IF (@smode == 0)
    ss = ss*(1 - sat(c3)*(((1 - cos((hh - hue(c3))*#pi/3))/2)^@spow))
  ELSE
    hh = (hh + hue(c3))%6
    IF (ss != 1.0 && sat(c3) != 1.0)
        ss = 1 - 1/((1/(1 - ss) - 1)*(1/(1 - sat(c3)) - 1) + 1)
    ENDIF
  ENDIF
  c1 = hsl(hh,ss,ll)
  ix = (i - 1)/@lfreq
  ix = ix - trunc(ix)
  IF (ix < 1/4)
    ix = ix*4
    ca = c2x3
    cb = c2x0
    cc = c2x1
    cd = c2x2
  ELSEIF (ix < 1/2)
    ix = (ix - 1/4)*4
    ca = c2x0
    cb = c2x1
    cc = c2x2
    cd = c2x3
  ELSEIF (ix < 3/4)
    ix = (ix - 1/2)*4
    ca = c2x1
    cb = c2x2
    cc = c2x3
    cd = c2x0
  ELSE
    ix = (ix - 3/4)*4
    ca = c2x2
    cb = c2x3
    cc = c2x0
    cd = c2x1
  ENDIF
  rp0 = red(cb)
  gp0 = green(cb)
  bp0 = blue(cb)
  rm0 = (red(cc) - red(ca))/2
  gm0 = (green(cc) - green(ca))/2
  bm0 = (blue(cc) - blue(ca))/2
  rp1 = red(cc)
  gp1 = green(cc)
  bp1 = blue(cc)
  rm1 = (red(cd) - red(cb))/2
  gm1 = (green(cd) - green(cb))/2
  bm1 = (blue(cd) - blue(cb))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  c2 = rgb(rrr,ggg,bbb)
  ix = (i - 1)/@lfreq2
  ix = ix - trunc(ix)
  IF (ix < 1/4)
    ix = ix*4
    ca = c3x3
    cb = c3x0
    cc = c3x1
    cd = c3x2
  ELSEIF (ix < 1/2)
    ix = (ix - 1/4)*4
    ca = c3x0
    cb = c3x1
    cc = c3x2
    cd = c3x3
  ELSEIF (ix < 3/4)
    ix = (ix - 1/2)*4
    ca = c3x1
    cb = c3x2
    cc = c3x3
    cd = c3x0
  ELSE
    ix = (ix - 3/4)*4
    ca = c3x2
    cb = c3x3
    cc = c3x0
    cd = c3x1
  ENDIF
  rp0 = red(cb)
  gp0 = green(cb)
  bp0 = blue(cb)
  rm0 = (red(cc) - red(ca))/2
  gm0 = (green(cc) - green(ca))/2
  bm0 = (blue(cc) - blue(ca))/2
  rp1 = red(cc)
  gp1 = green(cc)
  bp1 = blue(cc)
  rm1 = (red(cd) - red(cb))/2
  gm1 = (green(cd) - green(cb))/2
  bm1 = (blue(cd) - blue(cb))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  c3 = rgb(rrr,ggg,bbb)
  ix = (i - 1)/@lfreq3
  ix = ix - trunc(ix)
  IF (ix < 1/4)
    ix = ix*4
    ca = c4x3
    cb = c4x0
    cc = c4x1
    cd = c4x2
  ELSEIF (ix < 1/2)
    ix = (ix - 1/4)*4
    ca = c4x0
    cb = c4x1
    cc = c4x2
    cd = c4x3
  ELSEIF (ix < 3/4)
    ix = (ix - 1/2)*4
    ca = c4x1
    cb = c4x2
    cc = c4x3
    cd = c4x0
  ELSE
    ix = (ix - 3/4)*4
    ca = c4x2
    cb = c4x3
    cc = c4x0
    cd = c4x1
  ENDIF
  rp0 = red(cb)
  gp0 = green(cb)
  bp0 = blue(cb)
  rm0 = (red(cc) - red(ca))/2
  gm0 = (green(cc) - green(ca))/2
  bm0 = (blue(cc) - blue(ca))/2
  rp1 = red(cc)
  gp1 = green(cc)
  bp1 = blue(cc)
  rm1 = (red(cd) - red(cb))/2
  gm1 = (green(cd) - green(cb))/2
  bm1 = (blue(cd) - blue(cb))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  c4 = rgb(rrr,ggg,bbb)
  ix = (i - 1)/@lfreq4
  ix = ix - trunc(ix)
  IF (ix < 1/4)
    ix = ix*4
    ca = c5x3
    cb = c5x0
    cc = c5x1
    cd = c5x2
  ELSEIF (ix < 1/2)
    ix = (ix - 1/4)*4
    ca = c5x0
    cb = c5x1
    cc = c5x2
    cd = c5x3
  ELSEIF (ix < 3/4)
    ix = (ix - 1/2)*4
    ca = c5x1
    cb = c5x2
    cc = c5x3
    cd = c5x0
  ELSE
    ix = (ix - 3/4)*4
    ca = c5x2
    cb = c5x3
    cc = c5x0
    cd = c5x1
  ENDIF
  rp0 = red(cb)
  gp0 = green(cb)
  bp0 = blue(cb)
  rm0 = (red(cc) - red(ca))/2
  gm0 = (green(cc) - green(ca))/2
  bm0 = (blue(cc) - blue(ca))/2
  rp1 = red(cc)
  gp1 = green(cc)
  bp1 = blue(cc)
  rm1 = (red(cd) - red(cb))/2
  gm1 = (green(cd) - green(cb))/2
  bm1 = (blue(cd) - blue(cb))/2
  ixt2 = ix^2
  ixt3 = ix^3
  ixa = 2*ixt3 - 3*ixt2 + 1
  ixb = ixt3 - 2*ixt2 + ix
  ixc = -2*ixt3 + 3*ixt2
  ixd = ixt3 - ixt2
  rrr = ixa*rp0 + ixb*rm0 + ixc*rp1 + ixd*rm1
  ggg = ixa*gp0 + ixb*gm0 + ixc*gp1 + ixd*gm1
  bbb = ixa*bp0 + ixb*bm0 + ixc*bp1 + ixd*bm1
  IF (rrr < 0.0)
    rrr = 0.0
  ELSEIF (rrr > 1.0)
    rrr = 1.0
  ENDIF
  IF (ggg < 0.0)
    ggg = 0.0
  ELSEIF (ggg > 1.0)
    ggg = 1.0
  ENDIF
  IF (bbb < 0.0)
    bbb = 0.0
  ELSEIF (bbb > 1.0)
    bbb = 1.0
  ENDIF
  color c5 = rgb(rrr,ggg,bbb)
  float mn = @fitminit
  float mx = @fitmaxit
  ix = i
  IF (@transfer == 1)
    ix = ix^(1/@transpower)
    mn = mn^(1/@transpower)
    mx = mx^(1/@transpower)
  ELSEIF (@transfer == 2)
    ix = log(ix)
    mn = log(mn)
    mx = log(mx)
  ENDIF
  IF (@fit)
    IF (ix < mn)
      ix = 0
    ELSE
      ix = (ix - mn)/(mx - mn)
    ENDIF
    ix = ix * @fittimes
  ELSE
    ix = 0.05*ix
  ENDIF
  color c6 = gradient(ix)
  IF (@mmode == 1)
    hh = (hue(c1)+hue(c6))%6
    float sc1 = sat(c1)
    float sc6 = sat(c6)
    IF (sc1 > 0.99)
      sc1 = 0.99
    ENDIF
    IF (sc6 > 0.99)
      sc6 = 0.99
    ENDIF
    sc1 = 1/(1 - sc1) - 1
    sc6 = 1/(1 - sc6) - 1
    ss = sc1*sc6
    ss = 1 - 1/(ss + 1)
    float ll1 = lum(c1)
    float ll2 = lum(c2)
    float ll3 = lum(c3)
    float ll4 = lum(c4)
    float ll5 = lum(c5)
    float ll6 = lum(c6)
    IF (ll1 == 1.0 || ll2 == 1.0 || ll3 == 1.0 || ll4 == 1.0 || ll5 == 1.0 || ll6 == 1.0)
      ll = 1.0
    ELSE
      ll1 = 1/(1 - ll1) - 1
      ll2 = 1/(1 - ll2) - 1
      ll3 = 1/(1 - ll3) - 1
      ll4 = 1/(1 - ll4) - 1
      ll5 = 1/(1 - ll5) - 1
      ll6 = 1/(1 - ll6) - 1
      ll = ll1*ll2*ll3*ll4*ll5*ll6
      ll = 1 - 1/(ll + 1)
    ENDIF
    IF (ss < 0)
      ss = 0
    ELSEIF (ss > 1)
      ss = 1
    ENDIF
    IF (ll < 0)
      ll = 0
    ELSEIF (ll > 1)
      ll = 1
    ENDIF
    #color = hsl(hh,ss,ll)
  ELSE
    hh = hue(c1)
    ss = sat(c1)
    float ll1 = lum(c1)
    float ll2 = lum(c2)
    float ll3 = lum(c3)
    float ll4 = lum(c4)
    float ll5 = lum(c5)
    IF (ll1 == 1.0 || ll2 == 1.0 || ll3 == 1.0 || ll4 == 1.0 || ll5 == 1.0)
      ll = 1.0
    ELSE
      ll1 = 1/(1 - ll1) - 1
      ll2 = 1/(1 - ll2) - 1
      ll3 = 1/(1 - ll3) - 1
      ll4 = 1/(1 - ll4) - 1
      ll5 = 1/(1 - ll5) - 1
      ll = ll1*ll2*ll3*ll4*ll5
      ll = 1 - 1/(ll + 1)
    ENDIF
    IF (ll < 0)
      ll = 0
    ELSEIF (ll > 1)
      ll = 1
    ENDIF
    IF (@mmode == 0)
      c1 = hsl(hh,ss,ll)
      float rr6 = red(c6)
      float gg6 = green(c6)
      float bb6 = blue(c6)
      IF (rr6 > 0.99)
        rr6 = 0.99
      ENDIF
      IF (gg6 > 0.99)
        gg6 = 0.99
      ENDIF
      IF (bb6 > 0.99)
        bb6 = 0.99
      ENDIF
      float rr1 = red(c1)
      float gg1 = green(c1)
      float bb1 = blue(c1)
      IF (rr1 > 0.99)
        rr1 = 0.99
      ENDIF
      IF (gg1 > 0.99)
        gg1 = 0.99
      ENDIF
      IF (bb1 > 0.99)
        bb1 = 0.99
      ENDIF
      rr6 = 1/(1 - rr6) - 1
      gg6 = 1/(1 - gg6) - 1
      bb6 = 1/(1 - bb6) - 1
      rr1 = 1/(1 - rr1) - 1
      gg1 = 1/(1 - gg1) - 1
      bb1 = 1/(1 - bb1) - 1
      float rrr = 1 - 1/(rr6*rr1 + 1)
      float ggg = 1 - 1/(gg6*gg1 + 1)
      float bbb = 1 - 1/(bb6*bb1 + 1)
      #color = rgb(rrr,ggg,bbb)
    ELSE
      float aa = alpha(c5)
      float omaa = 1 - aa
      IF (@mmode == 2)
        c1 = hsl(hh,ss,ll)
        float rrr = red(c6)*aa + red(c1)*omaa
        float ggg = green(c6)*aa + green(c1)*omaa
        float bbb = blue(c6)*aa + blue(c1)*omaa
        #color = rgb(rrr,ggg,bbb)
      ELSE
        hh = (hue(c6)+hh)%6
        ss = sat(c6)*aa + ss*omaa
        ll = lum(c6)*aa + ll*omaa
        #color = hsl(hh,ss,ll)
      ENDIF
    ENDIF
  ENDIF
default:
  title = "Mandelbrot Multiwave Coloring"
  param power
    caption = "Exponent"
    default = (2,0)
    hint = "This should be set to match the exponent of the \
            formula you are using. For Mandelbrot, this is 2. \
            Only needed when coloring divergent points."
  endparam
  color param c1a
    caption = "Hue 1A"
    default = rgb(130/255,91/255,40/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c2a
    caption = "Hue 2A"
    default = rgb(186/255,153/255,102/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c3a
    caption = "Hue 3A"
    default = rgb(248/255,114/255,12/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c4a
    caption = "Hue 4A"
    default = rgb(74/255,0,0)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  param hfreq1
    caption = "Short hue shift period (iters)"
    default = 530.0
    hint = "Changes the period of the short hue modification cycle. Early in the long cycle it will cycle among the four colors above."
  endparam
  color param c1b
    caption = "Hue 1B"
    default = rgb(77/255,49/255,19/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c2b
    caption = "Hue 2B"
    default = rgb(195/255,179/255,131/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c3b
    caption = "Hue 3B"
    default = rgb(231/255,227/255,23/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c4b
    caption = "Hue 4B"
    default = rgb(240/255,164/255,0)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c1c
    caption = "Hue 1C"
    default = rgb(0,72/255,16/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c2c
    caption = "Hue 2C"
    default = rgb(133/255,146/255,128/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c3c
    caption = "Hue 3C"
    default = rgb(179/255,220/255,72/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c4c
    caption = "Hue 4C"
    default = rgb(243/255,224/255,83/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c1d
    caption = "Hue 1D"
    default = rgb(24/255,23/255,103/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c2d
    caption = "Hue 2D"
    default = rgb(144/255,143/255,163/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c3d
    caption = "Hue 3D"
    default = rgb(64/255,153/255,192/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c4d
    caption = "Hue 4D"
    default = rgb(31/255,173/255,131/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c1e
    caption = "Hue 1E"
    default = rgb(120/255,22/255,22/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c2e
    caption = "Hue 2E"
    default = rgb(177/255,129/255,130/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c3e
    caption = "Hue 3E"
    default = rgb(189/255,65/255,68/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param c4e
    caption = "Hue 4E"
    default = rgb(33/255,31/255,79/255)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  param hfreq2
    caption = "Long hue shift period (iters)"
    default = 5147.0
    hint = "Changes the period of the long hue modification cycle."
  endparam
  color param cx
    caption = "Superslow bias color 1"
    default = rgb(0.5,0.5,0.5)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param cy
    caption = "Superslow bias color 2"
    default = hsl(0,0.5,0.7)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  color param cz
    caption = "Superslow bias color 3"
    default = hsl(5,1.0,0.3)
    hint = "Altering these hues will alter the way the gradient is modified."
  endparam
  param sfreq
    caption = "Superslow bias period (iters)"
    default = 82117.0
    hint = "Changes the period of the superslow bias cycle."
  endparam
  param smode
    caption = "Superslow bias mode"
    enum = "saturation bias" "hsl bias"
    default = 1
    hint = "Luminances adjust luminance of colors above; in saturation bias mode hue/saturation adjusts saturation. Hues matching this hue are unchanged, hues opposite have their saturation reduced the higher this color's saturation. The effect is to suppress opposite hues; set this to saturated red to suppress cyan for example. Neutral gray has no effect. In hsl bias mode hsl addition is used instead."
  endparam
  param spow
    caption = "Superslow bias sensitivity"
    default = 4.0
    min = 0.01
    hint = "Higher values narrow the range of hues desaturated; lower ones widen the range. 2 and 0.5 have opposite effects."
  endparam
  param lfreq
    caption = "First luminance shift period (iters)"
    default = 17.0
    hint = "Changes the period of the first luminance modification cycle. The four colors of the short cycle will change gradually to the second set of four, then the third, then the fourth, before returning."
  endparam
  param lmag
    caption = "First luminance shift amplitude"
    default = 0.2
    min = 0.0
    max = 1.0
    hint = "Changes the amplitude of the first luminance modification cycle."
  endparam
  param lfreq2
    caption = "Second luminance shift period (iters)"
    default = 94.0
    hint = "Changes the period of the second luminance modification cycle."
  endparam
  param lmag2
    caption = "Second luminance shift amplitude"
    default = 0.4
    min = 0.0
    max = 1.0
    hint = "Changes the amplitude of the second luminance modification cycle."
  endparam
  param lfreq3
    caption = "Third luminance shift period (iters)"
    default = 2544.0
    hint = "Changes the period of the third luminance modification cycle."
  endparam
  param lmag3
    caption = "Third luminance shift amplitude"
    default = 0.6
    min = 0.0
    max = 1.0
    hint = "Changes the amplitude of the third luminance modification cycle."
  endparam
  param lfreq4
    caption = "Fourth luminance shift period (iters)"
    default = 18544.0
    hint = "Changes the period of the fourth luminance modification cycle."
  endparam
  param lmag4
    caption = "Fourth luminance shift amplitude"
    default = 0.6
    min = 0.0
    max = 1.0
    hint = "Changes the amplitude of the fourth luminance modification cycle."
  endparam
  param mmode
    caption = "Primary gradient merge mode"
    enum = "rgb bias" "hsl bias" "rgb blend" "hsl blend"
    default = 1
    hint = "Affects how the gradient is applied to the color ripples; the blend options use the gradient's alpha"
  endparam
  param fit
    caption = "Fit Gradient to Range"
    default = true
    hint = "Check this to spread the gradient out over the range of iteration values."
  endparam
  param fittimes
    caption = "Number of repetitions"
    default = 1.0
    min = 1.0
    hint = "Repeats gradient the specified number of times over the range of iteration values."
  endparam
  param fitminit
    caption = "Start iteration"
    default = 1.0
    min = 1.0
    hint = "Gradient begins at this iteration number. It is best if it's approximately the lowest \
            actual number of iterations in the image. You can find the exact number by looking at \
            Statistics after generating the image once."
  endparam
  param fitmaxit
    caption = "End iteration"
    default = 1000.0
    min = 1.0
    hint = "Gradient fitting is based on this range of iterations. Can be profitably made lower than \
            maxiter -- try reducing it by factors of 10 until the gradient doesn't fit well, then raise \
            it by a factor of 10 once."
  endparam
  param transfer
    caption = "Super transfer function"
    enum = "Linear" "Power" "Log"
    default = 2
    hint = "Linear distributes gradient evenly over iterations. \
            Power weights gradient towards lower iterations for powers > 1. \
            Log weights gradient towards lower iterations."
  endparam
  param transpower
    caption = "Transfer power"
    default = 3.0
    hint = "Larger values weight gradient more towards low iterations. \
            3.0 with a regular transfer function of Linear and a super transfer \
            function of Linear with a regular transfer function of CubeRoot \
            produce the same results."
    visible = (@transfer == 1)
  endparam
  param bailout
    caption = "Bail-out value"
    default = 100000.0
    hint = "Larger gives smoother coloring, up to a point."
    min = 1
  endparam
  param displacement
    caption = "Displacement"
    default = 0.0
    hint = "Skips the first N iterations of the color gradient, effectively shifting the whole color scheme to lower iterations as a block. Use this for testing."
    min = 0.0
  endparam
  param rescale
    caption = "Rescaling"
    default = 1.0
    hint = "Compresses the entire color gradient by this factor, after application of displacement. Use this for testing."
    min = 1.0
  endparam
}

transformations (*.uxf)

[edit | edit source]

equirectangular

[edit | edit source]

equirectangular project by pauldelbrot[4]

float lon = real(#pixel)
float lat = imag(#pixel)
IF ((|lon| > 4) || (|lat| > 1))
  #solid = true
ELSE
  lon = lon * 0.5 * #pi
  lat = (lat * 0.25 + 0.25) * #pi
  float r = tan(lat)               
  #pixel = r*(cos(lon) + (0,1)*sin(lon))
ENDIF

Description

  • Outside the rectangle will be black (or whatever the transform solid color is set to).
  • The rectangle will be in -2 to 2 horizontally and -1 to 1 vertically, so with magnification 1 and center 0 and a 2:1 image aspect ratio it will exactly fill the image rect.
  • Inside the rectangle will be an equirectangular projection of the Riemann sphere.
  • The #pixel= assignment actually does the transform. The RHS of that assignment is just a final polar-to-cartesian conversion.
  • The (0,1) constant is i, the square root of minus one.

exponential

[edit | edit source]

Exponential mapping

M(3,1) Misiurewicz point looks like at 1E10 magnification (bottom) use the exponential map.jpg
ExponentialMap {
; https://fractalforums.org/ultrafractal/59/exponential-map-transform/1697
; Vertical exponential transform.
; Make narrow high window (say 100X800), zoom, put point of interest at bottom.
; Turn on. Tweak with the 2 controls, and select appropriate width (depends on image,
; narrower for deeper zooms).
;
global:
  if (4 * #height < 3 * #width)
    pixeldim = 3/#magn/#height
  else
    pixeldim = 4/#magn/#width
  endif
  w = #width * pixeldim
  h = #height * pixeldim
  cc = #center
  c0 = cc - 1i/2 * h +0i*w -w/4 * @sh
  b = w/h*log(#magn) *@b
  a = 1i*w/b
transform:
    if @ison
      c = #pixel
      dc = a*(exp(-1i*b/w*(c-c0)))
      #pixel = c0+dc
    endif
default:
  title = "Exponential map"
  param ison
    caption = "On"
    default = false
  endparam
  float param b
    caption = "vert. control"
    default = 1.2
  endparam
  float param sh
    caption = "hor. shift"
    default = 0
  endparam
}

images

[edit | edit source]

files

[edit | edit source]
  • ufr : Fractal Files *.ufr
  • upr : Displays parameter files (*.upr) : additional parameters specific to the selected fractal formula
  • par : Older Fractint parameter files (*.par)
  • ugr : Displays gradient files (*.ugr)
  • ual : Older gradient files (*.ual)
  • map : Fractint palette files (*.map)
  • uxf : Displays transformation files (*.uxf)
  • ufm : Displays fractal formula files (*.ufm). Fractal formula files contain multiple fractal formulas. Older Fractint formula files (*.frm) are also shown. See Fractal formulas.
  • ucl : Displays coloring algorithm files (*.ucl). See also writing coloring algorithm
  • ulb : Displays plug-in library files (*.ulb)

troubledTree4 by pauldelbrotfractalforums.org: ultrafractal histogram-de-coloring

a very dense location in the Mandelbrot set, which I have used as a test for various DE methods in the past. This method has given the overall best result here, with one caveat: the spiral centers are too dark, losing detail of  the very center of each one, likely because the sampling grid misses points this close and they are not included in the histogram. With the default settings, this image is computed at 200 megapixels in a day and a half on decent modern hardware; with a higher sampling density it would be significantly slower still.
troubledTree4 {
fractal:
  title="troubled tree 4" width=960 height=540 layers=1
  credits="Owner;9/9/2023" antialiasing=yes
layer:
  caption="Background" opacity=100 method=linear transparent=yes
mapping:
  center=-1.1454771035128796953843/0.26992867352137579904915
  magn=1.1827E13
formula:
  maxiter=1000000 percheck=off filename="Standard.ufm"
  entry="FastMandel" p_start=0/0 p_bailout=4.0
inside:
  transfer=none
outside:
  transfer=linear filename="pgd_DE_histogram.ucl"
  entry="pgd_MandelbrotDEH" p_seed=-1/0 p_mand=yes p_swidth=100
  p_sheight=100 p_finalheight=1080
gradient:
  smooth=yes index=0 color=8716288 index=100 color=16121855 index=200
  color=46591 index=300 color=156
opacity:
  smooth=no index=0 opacity=255
}

Julia set Dragon for Deh Test ( Distance Estimation Histogram)

juliaDragonDehTest {
fractal:
  title="julia dragon deh test" width=960 height=540 layers=1
  credits="Owner;9/10/2023" antialiasing=yes
layer:
  caption="Background" opacity=100 method=linear transparent=yes
mapping:
  center=0/0 magn=1.6666667
formula:
  maxiter=1000000 percheck=off filename="Standard.ufm" entry="Julia"
  p_seed=-0.747/0.08 p_power=2/0 p_bailout=1.0E70
inside:
  transfer=none
outside:
  transfer=linear filename="pgd_DE_histogram.ucl"
  entry="pgd_MandelbrotDEH" p_seed=-0.747/0.08 p_mand=no p_swidth=100
  p_sheight=100 p_finalheight=1080
gradient:
  smooth=yes index=0 color=8716288 index=100 color=16121855 index=200
  color=46591 index=300 color=156
opacity:
  smooth=no index=0 opacity=255
}

Lichtenberg upr with dense fragment of parameter plane by pauldelbrot[5]

Lichtenberg {
fractal:
  title="Lichtenberg" width=960 height=540 layers=1
  credits="Owner;7/1/2020" antialiasing=yes
layer:
  caption="Background" opacity=100 method=linear
mapping:
  center=-1.1477908048866525/0.2752899772141804 magn=17309286
formula:
  maxiter=10000000 filename="Standard.ufm" entry="FastMandel"
  p_start=0/0 p_bailout=4.0
inside:
  transfer=none
outside:
  transfer=linear filename="pgd.ucl" entry="pgd_MSetBoundary4"
  p_bwidth=1.0 p_pow=0.5 p_power=2/0 p_mandel=yes p_convergent=no
  p_preit=100 p_bailout=100000.0
gradient:
  comments="Use with Lighting coloring algorithm." smooth=yes index=0
  color=16777215 index=399 color=0
opacity:
  smooth=no index=0 opacity=255
}

pgd.ucl:pgd_MSetBoundary4 {
; A superior distance estimator boundary render that colors
; the boundary using a gradient. Works well with the
; "lighting" gradient. Points not near the boundary get
; solid colored; pixels that contain M-set boundary get
; gradient colored. The gradient can roughly be considered
; to approximate the fractal dimension of the boundary, with
; earlier colors indicating D near 1 and later ones
; indicating D close to 2.
;
; It should also work for Julia sets.
;
; Non-z^n + c fractals will not generally give accurate
; results.
;
; Tip: Turn off "repeat gradient" when coloring non-convergent
; points (so, on the Outside tab).
;
; Uses a different algorithm to map distances to grey shades
; than the first two Mandelbrot Boundaries.
;
init:
  complex der = 1
  complex dc = 0
  complex dzz = 0
  complex dcz = 0
  int i = 0
  complex t = 0
  bool done = false
  bool edge = false
  float pixsize = 4*@bwidth/(#magn*#width)
loop:
  IF (@convergent && !done)
    IF (i == @preit)
      t = #z
    ELSEIF (i > @preit)
      IF (@power != 2)
        dzz = @power*(sqr(der)*(@power - 1)*(#z)^(@power - 2) + dzz*(#z)^(@power - 1))
        dcz = @power*(der*dc*(@power - 1)*(#z)^(@power - 2) + dcz*(#z)^(@power - 1))
        der = @power*der*(#z)^(@power - 1)
        dc = @power*dc*(#z)^(@power - 1)
        ; Generalized from below to z^n + c.
      ELSE
        dzz = 2*(sqr(der) + #z*dzz)
        dcz = 2*(der*dc + #z*dcz)
        der = 2*der*#z
        dc = 2*dc*#z + 1
        ; From TSOFI D.2 "Finding Disks in the Interior of M".
      ENDIF
      IF (|#z - t| < (1/@bailout))
        done = true
        IF (|der| >= 1)
          edge = true ; Misiurewicz point or component boundary
        ENDIF
      ENDIF
    ENDIF
    i = i + 1
  ELSEIF (!done)
    IF (@power != 2)
      der = @power*der*(#z)^(@power - 1)
      ; Generalized from below to z^n + c.
    ELSE
      der = 2*der*#z
      ; From TSOFI D.1 "Bounding the Distance to M"
    ENDIF
    IF (@mandel)
      der = der + 1
    ENDIF
  ENDIF
final:
  float dist = 0
  IF (@convergent)
    complex cc = 1 - der
    complex dd = dc*conj(cc)/|cc|
    complex ee = dcz + dzz*dd
    dist = 0.25*(1.0 - |der|)/cabs(ee)
  ELSE
    float d = cabs(#z)
    dist = real(d*log(d)*0.5/cabs(der))
  ENDIF
  IF (edge)
    dist = 1.0
  ENDIF
  IF ((dist < pixsize) && (done || (!@convergent)))
    ; Pixel contains boundary points.
    dist = dist / pixsize
    IF (@pow < 0)
      dist = 1 - dist ^ (1/@pow)
    ELSE
      dist = dist ^ (1/@pow)
    ENDIF
    #index = 4*atan(log(1/dist))/#pi - 1
  ELSEIF (@convergent && (!done))
    ; Probably right on the edge.
    #index = 1.0
  ELSE
    ; Pixel does not contain boundary points.
    #solid = true
  ENDIF
default:
  title = "Mandelbrot Boundary 4"
  heading
    caption = "Coloring settings"
  endheading
  param bwidth
    caption = "Border width (pix)"
    default = 1.0
    min = 0.0
    hint = "Border width in pixels. You may want to reduce \
            this for antialiased renders."
  endparam
  param pow
    caption = "Curve Power"
    default = 1.0
    hint = "Adjusting this affects how fast the gradient changes in denser \
            parts of the m-set boundary. Try adjusting it if filaments are \
            too dark or seahorse centers are washed out."
  endparam
  heading
    caption = "Formula settings"
  endheading
  param power
    caption = "Exponent"
    default = (2,0)
    hint = "This should match the power used in the Mandelbrot \
            or Julia formula parameters."
  endparam
  param mandel
    caption = "Mandelbrot"
    default = true
    hint = "Uncheck this for Julia fractals."
  endparam
  param convergent
    caption = "Convergent"
    default = false
    visible = (@mandel)
    hint = "Check this to color Mandelbrot interior points \
            close to the boundary."
  endparam
  heading
    caption = "Cycle-detection tuning"
    visible = (@mandel && @convergent)
  endheading
  param preit
    caption = "Preiterations"
    default = 100
    min = 0
    visible = (@mandel && @convergent)
    hint = "Iterations to calculate before looking for a cycle \
            when estimating interior distances. Larger values \
            make cycle detection more accurate."
  endparam
  param bailout
    caption = "Bailout"
    default = 100000.0
    min = 0.0
    hint = "Larger values make cycle detection more accurate, \
            but more preiterations are needed."
    visible = (@mandel && @convergent)
  endparam
}

Coloring algorithms:

  • are stored in coloring algorithm files (*.ucl). Each file can contain multiple coloring algorithms.
  • define how fractals are colored. The fractal formula creates the basic shape of the fractal, and coloring algorithms provide ways to color that shape. This gives you the flexibility to freely combine coloring algorithms with any fractal formula.

Examples:

Mu-Ency(OUTSIDE) {
;
; Hybrid direct colouring scheme combining dwell, binary decomposition and distance estimator.
;
; Written by Aleph0, based on an algorithm designed by Robert Munafo and documented here:
;
;	http://mrob.com/pub/muency/color.html
;
; See also his examples of hybrid colouring schemes:
;
;	http://mrob.com/pub/muency/demdwellhybrid.html
;	http://mrob.com/pub/muency/binarydecomposition.html
;
; The above pages are part of Robert's Mu-Ency Encyclopedia of the Mandelbrot Set web site:
;
;	http://mrob.com/pub/muency.html
;
; This is a good colouring scheme to use when exploring and studying the structure of the Mandelbrot Set at deep zoom levels, as the distance
; estimator scales automatically to reflect the zoom level and the colouring effects are subtle enough to not detract from the filament detail.
; Conventional colouring approaches that use dwell and a wide colour pallette can be problematic at deep zoom levels, as they introduce excessive
; noise that tends to obscure the structure of the set's connecting filaments.
;
; I have followed Robert's general design, but implemented the following user-configurable settings for individual elements of the scheme. The
; default settings match the style used for most of the images hosted at the Mu-Ency web site.
;
;	- Binary decomposition (checker-board) effect can be switched on or off (default = on).
;	- Dwell band lightening can selected for either odd or even numbered stripes (default = odd).
;	- Rainbow effect can be switched on or off (default = off).
;	- Distance estimator filament widths can be scaled (multiplier values 0.01-100, default = 1).
;	- Dwell colour slope is adjustable (log base selectable 2.0-1000000.0, default 80).
;	- Dwell colour pallette starting point can be rotated (range 0.0-6.0, default 0).
;
; NOTE: Set Inside Solid Colour = White to match the style used for most of the images hosted at the Mu-Ency web site. 
;
global:
  $define DEBUG
  float pixel_spacing = 4 / (#magn * #width)		; Unzoomed Mandelbrot set width = 4.0.
init:
  float angle = 0
  complex dz = (0,0)
  float distance_estimate = 0
  float dscale = 0
  int dwell = 0
  float D = 0
;  float finalang = 0
  float finalrad = 0
  float hue = 0
  float P = 0
  float radius = 0
  float saturation = 0
  float value = 0
  float z = 0
loop:
  dz = @power * #z^(@power-1) * dz + 1
final:
  z = cabs(#z)		; Reordered relative to Robert's description, for substitution into D formula, hence avoiding repetition of cabs calculation.
  D = #numiter + log(log(z)/log(2))/log(2) - log(log(128)/log(2))/log(2)
  dwell = floor(D)
  finalrad = D - dwell
;  finalang = atan(imag(#z)/real(#z))
  distance_estimate = (log(z*z) * z)/cabs(dz)
  dscale = log(distance_estimate/(10 * @DE_width * pixel_spacing))/log(2)
; Convert scaled distance estimate to value (luminance in HSL colour space) from 0.0 to 1.0 in 8 bands. 
  if dscale > 0
    value = 1.0
  elseif dscale > -8
    value = (8 + dscale)/8
  else
    value = 0
  endif
; Scale value downwards, as 1.0 results in colour white. Spec may be wrong - washes out colours with that range.
  value = value*0.65
; Apply logarithmic scaling to dwell.
  P = log(dwell)/log(@C_slope)		; Mu-Ency algorithm specifies 100000, but that makes colours change too slowly.
;  P = dwell
; Map scaled dwell to an angle and radius on the colour wheel.
  if P < 0.5
    P = 1.0 - 1.5*P
    angle = 1 - P
    radius = sqrt(P)
  else
    P = 1.5*P - 0.5
    angle = P
    radius = sqrt(P)
  endif
; Make every even or odd numbered stripe a bit lighter, dependent on setting of stripe_phase parameter.
  if (dwell + @stripe_phase) % 2 == 1
    value = 0.85 * value
    radius = 0.667 * radius
  endif
; Break the stripes into squares to make the external angles evident. In combination with the stripes, produces a checkerboard appearance.
;  if finalang > #pi	; Mu-Ency algorithm specifies > pi, but that's impossible. However, page http://mrob.com/pub/muency/binarydecomposition.html
						; specifies testing for positive imaginary component of final iteration.
  if @binary == 1 && imag(#z) < 0
    angle = angle + 0.1	; Mu-Ency algorithm specifies 0.02, but that's not generally enough.
  endif
; Add rainbow-like gradient
  if @rainbow == 1
    angle = angle + 0.2 * finalrad	; Mu-Ency algorithm specifies 0.0001, but effect is then invisible.
  endif
; Set up the hue.
;  hue = angle * 10.0				; I think multiplier 10 in spec may be wrong; band colours change too rapidly?
  hue = angle
  hue = (hue - floor(hue))*6		; Hue is in range 0-6 for Ultra Fractal, scale up from 0-1.
  hue = (hue + @C_rotation) % 6				; Hue starts at red in UF, rotate by 3 to start at cyan.
; Set up the saturation.
;  saturation = radius - floor(radius)					; This wraps to zero saturation (flat grey) when radius reaches a new integer!
  saturation = 0.7 + 0.3 * (radius - floor(radius))		; This wraps to 0.7 saturation.
;  if real(#screenpixel) == 0 && imag(#screenpixel) == 0
;    int i = #numiter
;	print("-----")
;    print("screenpixel = ", #screenpixel, " ... finaliter = ", i)
;	print("#z = ", #z, " ... z = ", z)
;	print("D = ", D, " ... dwell = ", dwell, " ... finalrad = ", finalrad)
;	print("dscale = ", dscale, " ... value = ", value)
;	print("P = ", P, " ... angle = ", angle, " ... radius = ", radius)
;	print("hue = ", hue, " ... saturation = ", saturation)
;  endif
; Set pixel colour using HSL colour model (hue, saturation, luminance).
;  #color = hsl(hue, 1.0, 1.0)
  #color = hsl(hue, saturation, value)
default:
  title = "Mu-Ency"
  float param power
    caption = "Exponent"
    default = 2.0
    hint = "This should be set to match the exponent of the \
            formula you are using. For Mandelbrot, this is usually 2."
  endparam
  int param binary
    caption = "Binary decomposition"
	enum = "Off" "On"
	default = 1
	hint = "Set on to enable binary decomposition, off to disable."
  endparam
  int param stripe_phase
    caption = "Dwell stripe phase"
	enum = "Even" "Odd"
	default = 1
	hint = "Selects whether to lighten odd or even dwell stripes."
  endparam
  int param rainbow
    caption = "Rainbow effect"
	enum = "Off" "On"
	default = 0
	hint = "Set on to enable rainbow effect, off to disable."
  endparam
  float param DE_width
	caption = "DE width"
	default = 1.0
	min = 0.01
	Max = 100
	hint = "Width multiplier for filaments rendered by distance estimator."
  endparam
  float param C_slope
	caption = "Colour slope."
	default = 80.0
	min = 2.0
	Max = 1000000.0
	hint = "Rate at which dwell colouring changes; lower values = faster changes, higher = slower."
  endparam
  float param C_rotation
	caption = "Colour rotation."
	default = 5.0
	min = 0.0
	Max = 6.0
	hint = "Rotates starting point of dwell colour pallette; adjust to obtain desired colours."
  endparam
}

Monochrome DE(OUTSIDE) {
;
; Monochrome distance estimator colouring scheme with configurable colours for outside set and near to set. Inside set colour can also
; be configured using Ultra Fractal's Inside layer properties.
;
; Written by Aleph0, based on a distance estimator algorithm designed by Robert Munafo and documented here:
;
;	http://mrob.com/pub/muency/color.html
;
; The above page is part of Robert's Mu-Ency Encyclopedia of the Mandelbrot Set web site:
;
;	http://mrob.com/pub/muency.html
;
; This is a good colouring scheme to use when exploring and studying the structure of the Mandelbrot Set at deep zoom levels, as the distance
; estimator scales automatically to reflect the zoom level. Conventional colouring approaches that use dwell and a wide colour pallette can be
; problematic at deep zoom levels, as they introduce excessive noise that tends to obscure the structure of the set's connecting filaments.
;
; The following user-configurable settings are available:
;
;	- Near colour can be selected (selects colour of points near the set, i.e. the filaments, colour darkens progressively to black based on
;	proximity to the set, default = black giving a grey scale transition to black).
;	- Blend outside and near colours. On = blend, off = use near colour directly. Both effects can be useful, dependent on the colour
;	combinations selected.
;	- Distance estimator filament widths can be scaled (multiplier values 0.01-100, default = 1).
;
; NOTE: Use Solid Colour setting in the Inside and Outside layer property pages to set the fill colour for inside and outside the set, 
; respectively. Select same colour for inside set and near set for monochrome renderings, e.g. to .
;
global:
  $define DEBUG
  float pixel_spacing = 4 / (#magn * #width)		; Unzoomed Mandelbrot set width = 4.0.
init:
  complex dz = (0,0)
  float distance_estimate = 0
  float dscale = 0
  float value = 0
  float z = 0
loop:
  dz = @power * #z^(@power-1) * dz + 1
final:
;  #solid = false
  z = cabs(#z)
  distance_estimate = (log(z*z) * z)/cabs(dz)
  dscale = log(distance_estimate/(10 * @DE_width * pixel_spacing))/log(2)
; Convert scaled distance estimate to value (outside/DE blend if blend on, luminance if blend off) from 0.0 to 1.0 in 8 bands. 
  if dscale > 0
    #color = hsl(hue(@outside_colour), sat(@outside_colour), lum(@outside_colour))
  else
    if @DE_smooth == 0
		if dscale > -1
		  #color = hsl(hue(@outside_colour), sat(@outside_colour), lum(@outside_colour))
		else
		  #color = hsl(hue(@DE_colour), sat(@DE_colour), lum(@DE_colour))
		endif
	else
	  if dscale > -8
        value = (8 + dscale)/8
      else
        value = 0
	  endif
	  value = value ^ @DE_slope
;      print("dscale = ", dscale, "... value = ", value)
	  #color = blend(@DE_colour, @outside_colour, value)
	endif
  endif
;  if real(#screenpixel) == 0 && imag(#screenpixel) == 0
;    int i = #numiter
;	print("-----")
;    print("screenpixel = ", #screenpixel, " ... finaliter = ", i)
;	print("#z = ", #z, " ... z = ", z)
;	print("dscale = ", dscale, " ... value = ", value)
;  endif
default:
  title = "Monochrome DE"
  float param power
    caption = "Exponent"
    default = 2.0
    hint = "This should be set to match the exponent of the \
            formula you are using. For Mandelbrot, this is usually 2."
  endparam
  color param outside_colour
	caption = "Outside colour"
	default = rgb(255,255,255)
	hint = "Colour to be used for points outside set."
  endparam
  color param DE_colour
	caption = "DE colour"
	default = rgb(0,0,0)
	hint = "Colour to be used for distance estimator filaments."
  endparam
  int param DE_smooth
	caption = "DE smoothing"
	enum = "Off" "On"
	default = 1
	hint = "On = use filament smoothing, off = no filament smoothing."
  endparam
  float param DE_width
	caption = "DE width"
	default = 1.0
	min = 0.00001
	Max = 100
	hint = "Width multiplier for filaments rendered by distance estimator."
  endparam
  float param DE_slope
	caption = "DE slope"
	default = 1.0
	min = 0.01
	Max = 100.0
	hint = "Slope for transition to DE colour: 1.0 = linear from threshold to set; \
											 < 1.0 = slow change near threshold accelerating to rapid change near set; \
											 > 1.0 = rapid change at threshold decelerating to slow change near set."
  endparam
}

DistanceEstimatorScaled(OUTSIDE) {
;
; Distance-estimator coloring algorithm for Mandelbrot and
; other z^n fractal types (Phoenix, Julia). This coloring
; algorithm estimates the distance to the boundary of the
; fractal (for example the Mandelbrot set) and colors points
; accordingly.
;
; Written by Damien M. Jones.
; Modified by Aleph0 to scale the distance estimate with zoom.
;
global:
  $define DEBUG
  float pixel_spacing = 4 / (#magn * #width)		; Unzoomed Mandelbrot set width = 4.0.
init:
  complex dz = (0,0)
loop:
  dz = @power * #z^(@power-1) * dz + 1
final:
  #index = (@power*log(cabs(#z)) * (cabs(#z)) / (cabs(dz) * 100000 * @DE_width * pixel_spacing))^(1/@power)
default:
  title = "Distance Estimator Scaled"
  helpfile = "Uf*.chm"
  helptopic = "Html/coloring/standard/distanceestimator.html"
  param power
    caption = "Exponent"
    default = 2.0
    hint = "This should be set to match the exponent of the \
            formula you are using. For Mandelbrot, this is usually 2."
  endparam
  float param DE_width
	caption = "DE width"
	default = 1.0
	min = 0.00001
	Max = 10000000
	hint = "Width multiplier for filaments rendered by distance estimator."
  endparam
}

Transformations globally transform and warp the shape of a fractal. You can combine various transformations to create complex effects.

gradient

[edit | edit source]

references

[edit | edit source]
  1. ultrafractal file formats
  2. Fractalforum : ultrafractal
  3. old fractalforum: ultrafracta - multiwave-coloring-for-mandelbrot
  4. fractalforums.org : fractal-on-sphere
  5. fractalforums.org : the-first-technical-challenge-the-lichtenberg-figure-the-winners-are