Jump to content

Fukushima Aftermath: Whither the Indian Point Nuke?/Light water reactor

From Wikibooks, open books for an open world
A pumpless light water reactor

The light water reactor (LWR) is a type of thermal reactor that uses normal water as its coolant and neutron moderator. Thermal reactors are the most common type of [[nuclear reactor, and light water reactors are the most common type of thermal reactor. There are three varieties of light water reactors: the pressurized water reactor (PWR), the boiling water reactor (BWR), and (most designs of) the supercritical water reactor (SCWR).

Overview

[edit | edit source]
The Koeberg nuclear power station, consisting of two pressurized water reactors fueled with uranium.

The family of nuclear reactors known as light water reactors (LWR), cooled and moderated using ordinary water, tend to be simpler and cheaper to build than other types of nuclear reactor; due to these factors, they make up the vast majority of civil nuclear reactors and naval propulsion reactors in service throughout the world as of 2009. LWRs can be subdivided into three categories - pressurized water reactors (PWRs), boiling water reactors (BWRs), and supercritical water reactors (SWRs). Various agencies of the United States of America|United States Federal Government of the United States|Federal Government were responsible for the initial development of the PWR and BWR. An effort by the United States Navy, starting immediately after the end of World War II, and led by (then) Captain Hyman Rickover, developed the first pressurized water reactors in the early 1950s, building the first nuclear submarine (the Template:USS) while researcher Samuel Untermyer II led the effort to develop the BWR at the US National Reactor Testing Station (now the Idaho National Laboratory) in a series of tests called the BORAX experiments. The former Soviet Union also independently developed their version of the PWR in the late 1950s, and it became known as the VVER; because of this, Russian-designed PWRs are known in the West as VVERs, to denote their independent origin, and certain national design distinctions from Western PWRs. The SWR remains hypothetical as of 2009; it is a Generation IV design that is still a light water reactor, but it is only partially moderated by light water and exhibits certain characteristics of a fast neutron reactor.

The leaders in national experience with PWRs, offering reactors for export, are the United States of America|United States (which offers the passively-safe AP1000, a Westinghouse Electric Company|Westinghouse design, as well as several smaller, modular, passively-safe PWRs, such as the Babcock and Wilcox B&W mPower|MPower, and the NuScale MASLWR), the Russian Federation (offering both the VVER-1000 and the VVER-1200 for export), the Republic of France (offering the AREVA Evolutionary Power Reactor|EPR for export), and Japan (offering the Mitsubishi Advanced Pressurized Water Reactor for export); in addition, both the People's Republic of China and the Republic of Korea are both noted to be rapidly ascending into the front rank of PWR-constructing nations as well, with the Chinese being engaged in a massive program of nuclear power expansion, and the Koreans currently designing and constructing their second generation of indigenous designs. The leaders in national experience with BWRs, offering reactors for export, are the United States of America|United States and Japan, with the alliance of General Electric (of the US) and Hitachi (of Japan), offering both the ABWR|Advanced Boiling Water Reactor (ABWR) and the ESBWR|Economic Simplified Boiling Water Reactor (ESBWR) for construction and export, in addition, Toshiba also offers an ABWR variant for construction in Japan, as well. Though the Federal Republic of Germany was once a major player with BWRs, that nation has moved towards other pursuits, such as their massive expansion of coal power|coal power plants. The other types of nuclear reactor in use for power generation are the heavy water moderated reactor, built by Canada (CANDU) and the Republic of India (AHWR), the advanced gas cooled reactor (AGCR), built by the United Kingdom, the liquid metal cooled reactor (LMFBR), built by the Russian Federation, the Republic of France, and Japan, and the RBMK|graphite-moderated, water-cooled reactor (RBMK), found exclusively within the Russian Federation and former Soviet states.

Though electricity generation capabilities are comparable between all these types of reactor, due to the aforementioned features, and the extensive experience with operations of the LWR, it is favored in the vast majority of new nuclear power plants, though the CANDU/AHWR has a comparatively small (but quite dedicated) following.[citation needed] In addition, light water reactors make up the vast majority of reactors that power Nuclear marine propulsion|naval nuclear powered vessels. Four out of the five great powers with nuclear naval propulsion capacity use light water reactors exclusively: the United Kingdom of Great Britain and Northern Ireland|British Royal Navy, the People's Republic of China|Chinese People's Liberation Army Navy, the Republic of France|French Marine nationale, and the United States of America|United States U.S. Navy|Navy. Only the Russian Federation|Russian Federation's Russian Navy|Navy has used a relative handful of liquid metal cooled reactor|liquid-metal cooled reactors in production vessels, specifically the Alfa class submarine, which used lead-bismuth eutectic as a reactor moderator and coolant, but the vast majority of Russian nuclear-powered boats and ships use light water reactors exclusively. The reason for near exclusive LWR use aboard nuclear naval vessels is the level of inherent safety built in to these types of reactors. Since light water is used as both a coolant and a neutron moderator in these reactors, if one of these reactors suffers damage due to military action, leading to a compromise of the reactor core's integrity, the resulting release of the light water moderator will act to stop the nuclear reaction and shut the reactor down. This capability is known as a void coefficient|negative void coefficient of reactivity.

Currently-offered LWRs include the following:

  • ABWR
  • AP1000
  • ESBWR
  • European Pressurized Reactor
  • VVER

LWR Statistics

[edit | edit source]

Data from the International Atomic Energy Agency.[1]

Reactors in operation. 359
Reactors under construction. 27
Number of countries with LWRs. 27
Generating capacity (Gigawatt). 328.4

Reactor design

[edit | edit source]

The light water reactor produces heat by controlled nuclear fission. The nuclear reactor core is the portion of a nuclear reactor where the nuclear reactions take place. It mainly consists of nuclear fuel and control rod|control elements. The pencil-thin nuclear fuel rods, each about 12 feet (3.7 m) long, are grouped by the hundreds in bundles called fuel assemblies. Inside each fuel rod, pellets of uranium, or more commonly uranium oxide, are stacked end to end. The control elements, called control rods, are filled with pellets of substances like hafnium or cadmium that readily capture neutrons. When the control rods are lowered into the core, they absorb neutrons, which thus cannot take part in the chain reaction. On the converse, when the control rods are lifted out of the way, more neutrons strike the fissile uranium-235 or plutonium-239 nuclei in nearby fuel rods, and the chain reaction intensifies. All of this is enclosed in a water-filled steel pressure vessel, called the reactor vessel.

In the boiling water reactor, the heat generated by fission turns the water into steam, which directly drives the power-generating turbines. But in the pressurized water reactor, the heat generated by fission is transferred to a secondary loop via a heat exchanger. Steam is produced in the secondary loop, and the secondary loop drives the power-generating turbines. In either case, after flowing through the turbines, the steam turns back into water in the condenser.[2]

Animated diagram of a pressurized water reactor
Animated diagram of a pressurized water reactor
Animated Diagram of a boiling water reactor
Animated Diagram of a boiling water reactor

The water required to cool the condenser is taken from a nearby river or ocean. It is then pumped back into the river or ocean, in warmed condition. The heat could also be dissipated via a cooling tower into the atmosphere. The United States uses LWR reactors for electric power production, in comparison to the heavy water reactors used in Canada.[3]

Control

[edit | edit source]

Image:Reactor Vessel head.jpg|thumb|250px|A pressurized water reactor head, with the control rods visible on the top. Control rods are usually combined into control rod assemblies — typically 20 rods for a commercial pressurized water reactor assembly — and inserted into guide tubes within a fuel element. A control rod is removed from or inserted into the Nuclear reactor core|central core of a nuclear reactor in order to control the number of neutrons which will split further uranium atoms. This in turn affects the thermal power of the reactor, the amount of steam generated, and hence the electricity produced. The control rods are partially removed from the core to allow a chain reaction to occur. The number of control rods inserted and the distance by which they are inserted can be varied to control the reactivity of the reactor.

Usually there are also other means of controlling reactivity. In the PWR design a soluble neutron absorber, usually boric acid, is added to the reactor coolant allowing the complete extraction of the control rods during stationary power operation ensuring an even power and flux distribution over the entire core. Operators of the BWR design use the coolant flow through the core to control reactivity by varying the speed of the reactor recirculation pumps. An increase in the coolant flow through the core improves the removal of steam bubbles, thus increasing the density of the coolant/moderator with the result of increasing power.

Coolant

[edit | edit source]

The light water reactor also uses ordinary water to keep the reactor cooled. The cooling source, light water, is circulated past the reactor core to absorb the heat that it generates. The heat is carried away from the reactor and is then used to generate steam. Most reactor systems employ a cooling system that is physically separate from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling water reactor.

Many other reactors are also light water cooled, notably the RBMK and some military plutonium production reactors. These are not regarded as LWRs, as they are moderated by graphite, and as a result their nuclear characteristics are very different. Although the coolant flow rate in commercial PWRs is constant, it is not in nuclear reactors used on U.S. Navy ships.

Image:Fuel Pellet.jpg|thumb|250px|A nuclear fuel pellet. Image:Pellet rod.jpg|thumb|250px|Nuclear fuel pellets that are ready for fuel assembly completion. The use of ordinary water makes it necessary to do a certain amount of enrichment of the uranium fuel before the necessary criticality of the reactor can be maintained. The light water reactor uses uranium 235 as a fuel, enriched to approximately 3 percent. Although this is its major fuel, the uranium 238 atoms also contribute to the fission process by converting to plutonium 239; about one-half of which is consumed in the reactor. Light-water reactors are generally refueled every 12 to 18 months, at which time, about 25 percent of the fuel is replaced.

The enriched UF6 is converted into uranium dioxide powder that is then processed into pellet form. The pellets are then fired in a high-temperature, sintering furnace to create hard, ceramic pellets of enriched uranium. The cylindrical pellets then undergo a grinding process to achieve a uniform pellet size. The uranium oxide is dried before inserting into the tubes to try to eliminate moisture in the ceramic fuel that can lead to corrosion and hydrogen embrittlement. The pellets are stacked, according to each nuclear core's design specifications, into tubes of corrosion-resistant metal alloy. The tubes are sealed to contain the fuel pellets: these tubes are called fuel rods.

The finished fuel rods are grouped in special fuel assemblies that are then used to build up the nuclear fuel core of a power reactor. The metal used for the tubes depends on the design of the reactor - stainless steel was used in the past, but most reactors now use a zirconium alloy. For the most common types of reactors the tubes are assembled into bundles with the tubes spaced precise distances apart. These bundles are then given a unique identification number, which enables them to be tracked from manufacture through use and into disposal.

Pressurized water reactor fuel consists of cylindrical rods put into bundles. A uranium oxide ceramic is formed into pellets and inserted into Zircaloy tubes that are bundled together. The Zircaloy tubes are about 1 cm in diameter, and the fuel cladding gap is filled with helium gas to improve the conduction of heat from the fuel to the cladding. There are about 179-264 fuel rods per fuel bundle and about 121 to 193 fuel bundles are loaded into a reactor core. Generally, the fuel bundles consist of fuel rods bundled 14x14 to 17x17. PWR fuel bundles are about 4 meters in length. The Zircaloy tubes are pressurized with helium to try to minimize pellet cladding interaction which can lead to fuel rod failure over long periods.

In boiling water reactors, the fuel is similar to PWR fuel except that the bundles are "canned"; that is, there is a thin tube surrounding each bundle. This is primarily done to prevent local density variations from effecting neutronics and thermal hydraulics of the nuclear core on a global scale. In modern BWR fuel bundles, there are either 91, 92, or 96 fuel rods per assembly depending on the manufacturer. A range between 368 assemblies for the smallest and 800 assemblies for the largest U.S. BWR forms the reactor core. Each BWR fuel rod is back filled with helium to a pressure of about three atmospheres (300 kPa).

Moderator

[edit | edit source]

A neutron moderator is a medium which reduces the velocity of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235. A good neutron moderator is a material full of atoms with light nuclei which do not easily absorb neutrons. The neutrons strike the nuclei and bounce off. After sufficient impacts, the velocity of the neutron will be comparable to the thermal velocities of the nuclei; this neutron is then called a thermal neutron.

The light water reactor uses ordinary water, also called light water, as its neutron moderator. The light water absorbs too many neutrons to be used with unenriched natural uranium, and therefore uranium enrichment or nuclear reprocessing becomes necessary to operate such reactors, increasing overall costs. This differentiates it from a heavy water reactor, which uses heavy water as a neutron moderator. While ordinary water has some heavy water molecules in it, it is not enough to be important in most applications. In practice all LWRs are also water cooled. In pressurized water reactors the coolant water is used as a moderator by letting the neutrons undergo multiple collisions with light hydrogen atoms in the water, losing speed in the process. This moderating of neutrons will happen more often when the water is denser, because more collisions will occur.

The use of water as a moderator is an important safety feature of PWRs, as any increase in temperature causes the water to expand and become less dense; thereby reducing the extent to which neutrons are slowed down and hence reducing the reactivity in the reactor. Therefore, if reactivity increases beyond normal, the reduced moderation of neutrons will cause the chain reaction to slow down, producing less heat. This property, known as the negative temperature coefficient of reactivity, makes PWR reactors very stable. In event of a loss-of-coolant accident, the moderator is also lost and the active fission reaction will stop leaving just a 5% power level for 1 to 3 years called the "decay heat". This 5% "decay heat" will continue for 1 to 3 years after shut down, where upon it finally reaches "full cold shutdown". "Decay heat" while dangerous and strong enough to melt the core, is not nearly as dangerous as an active fission reaction. During this "decay heat" post shutdown period the reactor requires water pumped cooling or the reactor will overheat to above 2200 degrees Celsius where upon the heat separates the cooling water in to its constituent parts Hydrogen and Oxygen which can cause hydrogen explosions, threatening structural damage or even the possible exposure of highly radioactive stored fuel rods stored ready for use in surrounding nuclear storage pools(approx 15 tons of fuel is replenished each year to maintain normal PWR operation). This decay heat is the major risk factor in LWR safety record.

PIUS reactor

[edit | edit source]

PIUS, standing for Process Inherent Ultimate Safety, was a Swedish design concept for a light-water reactor system.[4] It relied on passive measures, not requiring operator actions or external energy supplies, to provide safe operation. No units were ever built.

References

[edit | edit source]
  1. "IAEA - LWR". Retrieved 2009-01-18.
  2. "European Nuclear Society - Light water reactor". Retrieved 2009-01-18.
  3. "Light Water Reactors". Retrieved 2009-01-18.
  4. National Research Council (U.S.). Committee on Future Nuclear Power, Nuclear power: technical and institutional options for the future National Academies Press, 1992, ISBN 0309043956 page 122
[edit | edit source]