GLPK/Conditional Constraints
Appearance
< GLPK
Constraints depending on a parameter
[edit | edit source]Sometimes constraints shall only be active if a condition is met which can be expressed by a parameter.
The following is not legal GMPL:
if (flag) { s.t. c : x <= 5; } else { s.t. c : x <= 3; }
But we can model it in GMPL as follows:
/* * This model demonstrates how to let the existence of simple constraints * depend on a parameter. */ /* This flag controls if constraint c0 or contraint c1 is active */ param flag := 1; var x; maximize obj: x; s.t. c0{i in {1} : flag == 0} : x <= 3; s.t. c1{i in {1} : flag == 1} : x <= 5; solve; display x; end;
We can do the same for indexed conditions:
/* * This model demonstrates how to let the existence of indexed constraints * depend on a parameter. */ /* This flag controls if constraint c0 or contraint c1 is active */ param flag := 0; set I := {1..3}; var x{I}, <= 10; maximize obj: sum{i in I} x[i]; s.t. c0{i in I : i < 3 && flag == 0} : x[i] <= 3; s.t. c1{i in I : i > 1 && flag == 1} : x[i] <= 5; solve; display x; end;
Constraints depending on a binary variable
[edit | edit source]If the relevance of constraints shall depend on a binary variable, we can use a BigM approach:
/* * This model demonstrates how to let the relevance of indexed constraints * depend on a binary variable. */ /* Big M, chosen as small as possible */ param M := 7; set I := {1..3}; var x{I}, <= 10; /* Binary variable controlling which constraint is active */ var y, binary; maximize obj: sum{i in I} x[i]; s.t. c0{i in I : i < 2} : x[i] <= 3 + M * y; s.t. c1{i in I : i > 1} : x[i] <= 5 + M * (1 - y); solve; display x, y; end;