General Biology/Cells/Respiration
Appearance
< General Biology | Cells
General Biology | Getting Started | Cells | Genetics | Classification | Evolution | Tissues & Systems | Additional Material
Glucose + O2 → CO2 + H2O + ATP
Energy
[edit | edit source]- Energy is primarily in C-H bonds (C-O too)
- Chemical energy drives metabolism
- Autotrophs: harvest energy through photosynthesis or related process (plants, algae, some bacteria)
- Heterotrophs: live on energy produced by autotrophs (most bacteria and protists, fungi, animals)
- Digestion: enzymatic breakdown of polymers into monomers
- Catabolism: enzymatic harvesting of energy
- Respiration: harvesting of high energy electrons from glucose
Respiration
[edit | edit source]- Transfer of energy from high energy electrons of glucose to ATP
- Energy depleted electron (with associated H+) is donated to acceptor molecule
- Aerobic respiration: oxygen accepts electrons, forms water
- Anaerobic respiration: inorganic molecule accepts hydrogen/electron
- Fermentation: organic molecule accepts hydrogen/electron
Respiration of glucose
[edit | edit source]- C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + energy
- ΔG = -720 kcal/mole under cellular conditions
- Largely from the 6 C-H bonds
- Same energy whether burned or catabolized
- In cells, some energy produces heat, most is transferred to ATP
Alternative anaerobic respiration
[edit | edit source]- Methanogens (Archaebacteria).
- CO2 is electron acceptor, forming CH4
- Sulfur bacteria
- SO4 reduced to H2S
- Formation of H2S set stage for evolution of photosynthesis (H2S as electron donor before H2O)
- About 2.7 by, based on ratio of 32S/34S, where only biological processes produce 32S enrichment
Glycolysis overview
[edit | edit source]Glycolysis accounting
- Oxidation
- Two electrons (one proton) are transferred from each G3P to NAD+ forming NADH
2NADH
- Substrate level phosphorylation
- G3P to pyruvate forms 2 ATP molecules
4 ATP (from 2 G3P)
–2 ATP (priming)
2 ATP (net gain)
Summary: The net input of glycolysis is 2 ATP molecules which are used to split one glucose molecule. The net yield of this step is 2 ATP and 2 pyruvate.
Regeneration of NAD+
[edit | edit source]- Reduction of NAD+ to NADH can deplete NAD+ supply; it must be regenerated
- Two pathways, coupled to fate of pyruvate
- With oxygen: enter electron transport chain, forming water (and ATP)
- Without oxygen: fermentation
- lactate
- ethanol
Alcohol fermentation
[edit | edit source]Lactate formation
[edit | edit source]Either lactic acid or alcohol can be formed as a result of anaerobic respiration in cells.
Krebs cycle: overview
[edit | edit source]- Matrix of mitochondrion
- Priming steps
- Joining of acetyl-CoA to oxaloacetate
- Isomerization reactions
- Energy extraction steps in Krebs cycle
- Per glucose
- 6 NADH
- 2 FADH2
- 2 ATP (from GTP)
- 4 CO2
ATP production
[edit | edit source]- Chemiosmosis (Mitchell)
- H+ (from NADH and FADH2) is pumped against a gradient into the intermembranal space of the mitochondrion (creates voltage potential)
- Diffusion back into matrix through ATP synthase channels drives synthesis of ATP (ADP + Pi → ATP)
- ATP exits mitochondrion by facilitated transport
Evolution of aerobic respiration
[edit | edit source]- Preceded by evolution of photosynthesis (O2 needed; also, prior evolution of electron transport and chemiosmosis)
- High efficiency of ATP production compared to glycolysis
- Fostered evolution of heterotrophs
- Fostered evolution of mitochondria by endosymbiosis in eukaryotes