LMIs in Control/pages/LMI for Generalized eigenvalue problem
LMI for Generalized Eigenvalue Problem
Technically, the generalized eigenvalue problem considers two matrices, like and , to find the generalized eigenvector, , and eigenvalues, , that satisfies . If the matrix is an identity matrix with the proper dimension, the generalized eigenvalue problem is reduced to the eigenvalue problem.
The System
[edit | edit source]Assume that we have three matrice functions which are functions of variables as follows:
where are , , and () are the coefficient matrices.
The Data
[edit | edit source]The , , and are matrix functions of appropriate dimensions which are all linear in the variable and , , are given matrix coefficients.
The Optimization Problem
[edit | edit source]The problem is to find such that:
, , and are satisfied and is a scalar variable.
The LMI: LMI for Schur stabilization
[edit | edit source]A mathematical description of the LMI formulation for the generalized eigenvalue problem can be written as follows:
Conclusion:
[edit | edit source]The solution for this LMI problem is the values of variables such that the scalar parameter, , is minimized. In practical applications, many problems involving LMIs can be expressed in the aforementioned form. In those cases, the objective is to minimize a scalar parameter that is involved in the constraints of the problem.
Implementation
[edit | edit source]A link to Matlab codes for this problem in the Github repository:
https://github.com/asalimil/LMI-for-Schur-Stability
Related LMIs
[edit | edit source]LMI for Generalized Eigenvalue Problem
LMI for Matrix Norm Minimization
LMI for Maximum Singular Value of a Complex Matrix
External Links
[edit | edit source]- [1] - LMI in Control Systems Analysis, Design and Applications