LMI Condition For Exponential Stability of Linear Systems With Interval Time-Varying Delays
For systems experiencing time-varying delays where the delays are bounded, the feasibility LMI in this section can be used to determine if the system is
-exponentially stable.
![{\displaystyle {\begin{aligned}{\dot {x}}(t)&=Ax(t)+Dx(t-h(t)),&t\in \mathbb {R} ^{+},\\x(t)&=\phi (t),&t\in [-h_{2},0],\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8e59304ffc12d2d0f2b0cbcfd86c447db0ff2d2)
where
is the state,
are the matrices of delay dynamics, and
is the initial function with norm
and it is continuously differentiable function on
. The tyime-varying delay function
satisfies:

The matrices
are known, as well as the bounds
of the time-varying delay.
For a given
, the zero solution of the system described above is
-exponentially stable if there exists a positive number
such that every solution
satisfies the following condition:
The LMI:
-Stability Condition
[edit | edit source]
The following feasibility LMI can be used to check if the system is
-exponentially stable or not for a given
:

The above LMI can be combined with the bisection method to find
.
For systems with time-varying delays with intervals, the LMI in this section can be used to check if the system is exponentially stable with a certain
. The bisection algorithm can be additionally used to compute
.
To solve the feasibility LMI, YALMIP toolbox is required for setting up the feasibility problem, and SeDuMi is required to solve the problem. The following link showcases an example of the feasibility problem:
https://github.com/smhassaan/LMI-Examples/blob/master/Intervaled_Delay_Sys_Stability_example.m
A list of references documenting and validating the LMI.