Jump to content

Materials Science/Materials/Ceramics

From Wikibooks, open books for an open world

Ceramics

[edit | edit source]

The word ceramic is derived from the Greek word. The term covers inorganic non-metallic materials whose formation is due to the action of heat. Up until the 1950s or so, the most important of these were the traditional clays, made into pottery, bricks, tiles and are like, along with cements and glass. The traditional crafts are described in the article on pottery. A composite material of ceramic and metal is known as cermet. The word ceramic can be an adjective, and can also be used as a noun to refer to a ceramic material, or a product of ceramic manufacture. Ceramics is a singular noun referring to the art of making things out of ceramic materials.

Many ceramic materials are hard, porous and brittle. The study and development of ceramics includes methods to mitigate problems associated with these characteristics, and to accentuate the strengths of the materials as well as to investigate novel applications.

There are a number of ceramics that are semiconductors. Most of these are transition metal oxides that are II-VI semiconductors, such as zinc oxide.

While there is talk of making blue LEDs from zinc oxide, ceramicists are most interested in the electrical properties that show grain boundary effects.

One of the most widely used of these is the varistor. These are devices that exhibit the property that resistance drops sharply at a certain threshold voltage. Once the voltage across the device reaches the threshold, there is a breakdown of the electrical structure in the vicinity of the grain boundaries, which results in its electrical resistance dropping from several megohms down to a few hundred ohms. The major advantage of these is that they can dissipate a lot of energy, and they self reset — after the voltage across the device drops below the threshold, its resistance returns to being high.

This makes them ideal for surge-protection applications. As there is control over the threshold voltage and energy tolerance, they find use in all sorts of applications. The best demonstration of their ability can be found in electrical substations, where they are employed to protect the infrastructure from lightning strikes. They have rapid response, are low maintenance, and do not appreciably degrade from use, making them virtually ideal devices for this application.

Semiconducting ceramics are also employed as gas sensors. When various gases are passed over a polycrystalline ceramic, its electrical resistance changes. With tuning to the possible gas mixtures, very inexpensive devices can be produced.

Ceramic materials are usually ionic or covalently-bonded materials, and can be crystalline or amorphous. A material held together by either type of bond will tend to fracture before any plastic deformation takes place, which results in poor toughness in these materials. Additionally, because these materials tend to be porous, the pores and other microscopic imperfections act as stress concentrators, decreasing the toughness further, and reducing the tensile strength. These combine to give catastrophic failures, as opposed to the normally much more gentle failure modes of metals.

These materials do show plastic deformation. However, due to the rigid structure of the crystalline materials, there are very few available slip systems for dislocations to move, and so they deform very slowly. With the non-crystalline (glassy) materials, viscous flow is the dominant source of plastic deformation, and is also very slow. It is therefore neglected in many applications of ceramic materials.

Under some conditions, such as extremely low temperature, some ceramics exhibit superconductivity. The exact reason for this is not known, but there are two major families of superconducting ceramics.

Piezoelectricity, a link between electrical and mechanical response, is exhibited by a large number of ceramic materials, including the quartz used to measure time in watches and other electronics. Such devices use both properties of piezoelectrics, using electricity to produce a mechanical motion (powering the device) and then using this mechanical motion to produce electricity (generating a signal). The unit of time measured is the natural interval required for electricity to be converted into mechanical energy and back again.

The piezoelectric effect is generally stronger in materials that also exhibit pyroelectricity, and all pyroelectric materials are also piezoelectric. These materials can be used to inter convert between thermal, mechanical, and/or electrical energy; for instance, after synthesis in a furnace, a pyroelectric crystal allowed to cool under no applied stress generally builds up a static charge of thousands of volts. Such materials are used in motion sensors, where the tiny rise in temperature from a warm body entering the room is enough to produce a measurable voltage in the crystal.

In turn, pyroelectricity is seen most strongly in materials which also display the ferroelectric effect, in which a stable electric dipole can be oriented or reversed by applying an electrostatic field. Pyroelectricity is also a necessary consequence of ferroelectricity. This can be used to store information in ferroelectric capacitors, elements of ferroelectric RAM.

The most common such materials are lead zirconate titanate and barium titanate. Aside from the uses mentioned above, their strong piezoelectric response is exploited in the design of high-frequency loudspeakers, transducers for sonar, and actuators for atomic force and scanning tunneling microscopes.

Increases in temperature can cause grain boundaries to suddenly become insulating in some semiconducting ceramic materials, mostly mixtures of heavy metal titanates. The critical transition temperature can be adjusted over a wide range by variations in chemistry. In such materials, current will pass through the material until joule heating brings it to the transition temperature, at which point the circuit will be broken and current flow will cease. Such ceramics are used as self-controlled heating elements in, for example, the rear-window defrost circuits of automobiles.

At the transition temperature, the material's dielectric response becomes theoretically infinite. While a lack of temperature control would rule out any practical use of the material near its critical temperature, the dielectric effect remains exceptionally strong even at much higher temperatures. Titanates with critical temperatures far below room temperature have become synonymous with "ceramic" in the context of ceramic capacitors for just this reason.

Non-crystalline ceramics: Non-crystalline ceramics, being glasses, tend to be formed from melts. The glass is shaped when either fully molten, by casting, or when in a state of toffee-like viscosity, by methods such as blowing to a mold. If later heat-treatments cause this class to become partly crystalline, the resulting material is known as a glass-ceramic.

Crystalline ceramics: Crystalline ceramic materials are not amenable to a great range of processing. Methods for dealing with them tend to fall into one of two categories - either make the ceramic in the desired shape, by reaction in situ, or by "forming" powders into the desired shape, and then sintering to form a solid body. Ceramic forming techniques include shaping by hand (sometimes including a rotation process called "throwing"), slip casting, tape casting (used for making very thin ceramic capacitors, etc.), injection molding, dry pressing, and other variations. (See also Ceramic forming techniques. Details of these processes are described in the two books listed below.) A few methods use a hybrid between the two approaches.

In the early 1980s, Toyota researched production of an adiabatic ceramic engine which can run at a temperature of over 6000 °F (3300 °C). Ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. Fuel efficiency of the engine is also higher at high temperature, as shown by Carnot's theorem. In a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent a meltdown of the metallic parts.

Despite all of these desirable properties, such engines are not in production because the manufacturing of ceramic parts in the requisite precision and durability is difficult. Imperfection in the ceramic leads to cracks, which can lead to potentially dangerous equipment failure. Such engines are possible in laboratory settings, but mass-production is unfeasible with current technology.

Work is being done in developing ceramic parts for gas turbine engines. Currently, even blades made of advanced metal alloys used in the engines' hot section require cooling and careful limiting of operating temperatures. Turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel.

Ceramics are used in the manufacture of knives. The blade of the ceramic knife will stay sharp for much longer than that of a steel knife, although it is more brittle and can be snapped by dropping it on a hard surface.

Since the late 1990s, highly specialized ceramics, usually based on boron carbide, formed into plates and lined with Spectra, have been used in ballistic armored vests to repel large-caliber rifle fire. Such plates are known commonly as small-arms protective inserts (SAPI). Very similar technology is used to protect cockpits of some military airplanes, because of the low weight of the material.

Recently, there have been advances in ceramics which include bio-ceramics, such as dental implants and synthetic bones. Hydroxyapatite, the natural mineral component of bone, has been made synthetically from a number of biological and chemical sources and can be formed into ceramic materials. Orthopedic implants made from these materials bond readily to bone and other tissues in the body without rejection or inflammatory reactions. Because of this, they are of great interest for gene delivery and tissue engineering scaffolds. Most hydroxy apatite ceramics are very porous and lack mechanical strength and are used to coat metal orthopedic devices to aid in forming a bond to bone or as bone fillers. They are also used as fillers for orthopedic plastic screws to aid in reducing the inflammation and increase absorption of these plastic materials. Work is being done to make strong-fully dense nano crystalline hydroxyapatite ceramic materials for orthopedic weight bearing devices, replacing foreign metal and plastic orthopedic materials with a synthetic natural bone mineral. Ultimately these ceramic materials may be used as bone replacements or with the incorporation of protein collagens, synthetic bones.