Jump to content

Image of a linear map – "Math for Non-Geeks"

From Wikibooks, open books for an open world

Fehler: Aktuelle Seite wurde in der Sitemap nicht gefunden. Deswegen kann keine Navigation angezeigt werden The image of a linear map is the set of all vectors in that are "hit by ". This set of vectors forms a subspace of and can be used to make the linear map surjective.

Derivation

[edit | edit source]
Image of the linear map
Visualization of the linear map

We consider a linear map between two -vector spaces and . A vector is transformed by into a vector . The mapping does not necessarily hit all elements from , because is not necessarily surjective. The mapped vectors form a subset . This set is called image of .

Since is linear, preserves the structure of the vector spaces and . Therefore, we conjecture that maps the vector space into a vector space. Consequently, the image of , i.e., the set should be a subspace of . We will indeed prove this in a theorem below.

Definition

[edit | edit source]

Definition (Image of a linear map)

Let and be two -vector spaces and a linear map. Then we call the image of .

Hint

In the literature, the notation is also often used instead of for the image of .

In the derivation we already considered that should be a subspace of . We now prove this as a theorem.

Theorem (The image is a subspace)

Let a linear map between the -vector spaces and . Then is a subspace of .

Proof (The image is a subspace)

To show that is a subspace, we need to check the subspace criteria:

  1. For all we have .
  2. For all and for all we have .

Proof step:

For every we have . So .

Proof step:

Since is a linear map, it holds that . Thus .

Proof step: For all we have .

Consider as given. That means, we can choose vectors and from with and . We now show that . To do this, we need to find a vector in that is mapped by to . Now As and we have that is inside the image of .

Proof step: For all and for all we have .

Let and . Then there is a vector with . We need to show that there is a vector in that is mapped to . It holds:

Now, since we have that .

Image and surjectivity

[edit | edit source]

We already know that a mapping is surjective if and only if the mapping "hits" all elements of . Formally, this means that is surjective if and only if . Now if is a linear map, then is a subspace of . In particular, if is finite-dimensional, then is surjective exactly if .

Example

The identity is a linear map. It is surjective, because every element has the preimage . Hence, we have and in particular .

The map is also linear. Further, each element has a preimage, for example . Thus we have shown and thus, is surjective. In particular .

The embedding is also linear, but not surjective. The vector is not contained in . Thus must hold. And indeed .

Sometimes it is useful to show the surjectivity of by proving .

Example

We consider the linear map and ask if is surjective. We want to answer the question by determining the dimension of and comparing it with . To do this, we first look for linearly independent vectors in the image of . The vectors and are linearly independent. Therefore, . Now from which we get . Thus, we obtain and is surjective.

The relationship between image and generating system

[edit | edit source]

We have seen in the article on epimorphisms, that a linear map preserves generators of if and only if it is surjective. In this case, the image of each generator of generates the entire vector space . In particular, the image of each generator of generates the image of . The last statement holds also for non-surjective linear maps:

Theorem (The image is the span of the images of a generating system)

Let be a linear map between two -vector spaces and . Let be a generator of . Then:

Proof (The image is the span of the images of a generating system)

We show the two inclusions.

Proof step:

Let . Then there are , and coefficients , such that Since the are in , there exist some with for . Then, because of the linearity of , we have

Proof step:

Let . Then there is a with . Since is a generator of , there are an , and coefficients , such that Now linearity of finally implies:

Image and linear system

[edit | edit source]

Let be an matrix and . The associated system of linear equations is . We can also interpret the matrix as a linear map . In particular, the image of is a subset of .

If , there is some such that . By definition of we have . Thus, the linear system of equations is solvable. Conversely, if is solvable, then there exists an with . For this , we now have . Thus .

So the image gives us a criterion for the solvability of systems of linear equations: A linear system of equations is solvable if and only if lies in the image of . However, the criterion makes no statement about the uniqueness of solutions. For this, one can use the kernel.

Examples

[edit | edit source]

We will now look at how to determine the image of a linear map.

Example

Let us consider the linear map This is a projection to the axis. Intuitively, then, the image of should be the -axis, i.e. We now want to prove this:

If , then there exists some with . So .

Conversely, because every vector of the form has a preimage under . So every such vector lies in .

This proves the desired statement.

Example

Let be a field. We consider the linear map

We want to determine the image of . To do this, we exploit the fact that is a basis of , so in particular it is a generator. We have seen in the last section that then .

We can specify this space explicitly by calculating the span:


After considering two examples in finite-dimensional vector spaces, we can venture to an example with an infinite-dimensional vector space. We consider the same function in the examples for determining the kernel of a linear map.

Example

Our goal is to determine the image of the linear map of the derivative of polynomials over . The set is a basis of . The derivative function is defined by for all .

We now want to know whether is surjective. To do this, we note that holds for every . Thus every basis element of is hit. So , and is indeed surjective.

When solving systems of linear equations, we will see many more examples. We will also learn a methodical way of solving for the determination of images.


Clipboard

To do:
link as soon as it is written.


Making linear maps "epic"

[edit | edit source]

We now want to construct a surjective linear map from a given linear map . If we consider to be a mapping of sets, we already know how to accomplish this: We restrict the target set of to and get some restricted mapping . Now, we just need to check that is linear. But this is clear because is a subspace of . So all we need to do to make surjective (i.e., an epi-morphism) is to restrict the objective of to .

This method also gives us an approach for making functions between other structures surjective: We need to check that the restriction on the image preserves the structure. For example, for a group homomorphism we can show that is again a group and is again a group homomorphism.

Outlook: How surjective is a linear map? - The cokernel

[edit | edit source]

In the article about the kernel we see that the kernel "stores" exactly that information which a linear map "eliminates". Further, is injective if and only if and the kernel intuitively represents a "measure of the non-injectivity" of .

We now want to construct a similar measure of the surjectivity of . The image of is not sufficient for this purpose: For example, the images of and are isomorphic, but is surjective and is not. From the image alone, no conclusions can be drawn as of whether is surjective, because surjectivity also depends on the target space . To measure "non-surjectivity," on the other hand, we need a vector space that measures, which part of is not hit by .

The space contains the information, which vectors are hit by . The goal is to "remove this information" from . We have already realized this "removal of information" in the article on the factor space by taking the quotient space . We call this space the cokernel of . It is indeed suitable for characterizing the non-surjectivity of , because is equal to the null space if and only if is surjective: A vector in that is not hit by yields a nontrivial element in and, conversely, a nontrivial element in yields an element in that is not hit by .

The kokernel even measures how non-surjective is exactly: if is larger, more vectors are not hit by . If is finite dimensional, we can measure the size of using the dimension. Thus, is a number we can use to quantify how non-surjective is. However, unlike , this number does not allow us to reconstruct the exact vectors that are not hit by .

Exercises

[edit | edit source]

Math for Non-Geeks: Template:Aufgabe

Math for Non-Geeks: Template:Aufgabe

Exercise (Image of a matrix)

  1. Consider the matrix and the mapping induced by it. What is the image ?
  2. Now let be any matrix over a field , where denote the columns of . Consider the mapping induced by . Show that holds. So the image of a matrix is the span of its columns.

Solution (Image of a matrix)

Solution sub-exercise 1:

We know that the image of the linear map is a subspace of . Since the -vector space has dimension , a subspace can only have dimension or . In the first case the subspace is the null vector space, in the second case it is already all of . So has only the two subspaces and . Since holds, we have that . Thus, .

Solution sub-exercise 2:

Proof step: ""

Let . Then, there is some with . We can write as . Plugging this into the equation , we get.


Since , we obtain .

Proof step: ""

Let with for . We want to find with . So let us define . The same calculation as in the first step of the proof then shows


Fehler: Aktuelle Seite wurde in der Sitemap nicht gefunden. Deswegen kann keine Navigation angezeigt werden