In this section, we drop the requirement of Lipschitz continuity. In fact, in this case we still obtain the existence of solutions, although the uniqueness is now no longer given. One can even construct very easy examples where
is not Lipschitz continuous, and uniqueness is no longer given. On the other hand, it remains possible that
is not Lipschitz continuous, and at the same time uniqueness is still given.
Theorem (Peano's theorem):
Let
be a real interval, let
be a subset and let
be a continuous function. Assume that
and
and
are given such that
. Then the system
![{\displaystyle {\begin{cases}x(t_{0})=x_{0}&\\x'(t)=f(t,x(t))&t\in [t_{0}-\gamma ,t_{0}+\gamma ]\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b450d92ea756b30f1a48128c769ac84fcefb92e8)
possesses at least one solution
, where
is less or equal than
, where
.
Proof:
We aim to reduce the proof of this theorem to an application of the Arzelà–Ascoli theorem, a version of which we proved (without using the axiom of choice) in the beginning (theorem 2.3). Thus, we first define a set of functions which is uniformly bounded and equicontinuous, then pick a suitable sequence within that set and take the Arzelà–Ascoli theorem to prove the existence of a convergent subsequence. The limit of this subsequence will then be the desired function, as we will show; we will prove all the requested properties.
For each
, we define
as follows: We set
;
this formula inductively defines
on all of
, for if we know
on the interval
, we can use that information to compute
on the interval
. Furthermore, also by induction on
, we can prove that in fact,
is contained within
for
; we need this in order for the integral formula to make sense in the first place.
This we do like this: Assume the claim is true for a
, and let
. Then

Next, we extend
to
as follows:
![{\displaystyle x_{r}(t):={\begin{cases}x_{0}&t\in [t_{0}-r,t_{0}]\\x_{0}+\int _{t}^{t_{0}}f(s,x_{r}(s+r))ds&t\geq t_{0}.\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/092533fbd48725199978055a090137bf91081cd5)
This is a continuous extension of the "old"
, since both the old and the new parts of the function are continuous and coincide on all of
. In this case, the very same arguments for well-definedness apply, and we get the same estimate of
as above, which hence holds on all of
. Thus, by the triangle inequality, we obtain uniform boundedness as follows:
,
where we identified
with the vector-valued constant function that is constantly
on
.
We now prove equicontinuity. Let thus
, where
is to be specified later. There are three cases to be considered:
![{\displaystyle t_{1},t_{2}\in [t_{0}-\gamma ,t_{0}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc58f7b2153c10a34df6c31e5a9e88b2e9e3dc1c)
, ![{\displaystyle t_{2}\in [t_{0},t_{0}+\gamma ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/96d919139c59cf097554565ccd7da52140ba90e5)
![{\displaystyle t_{1},t_{2}\in [t_{0},t_{0}+\gamma ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/05963e8de01840bec2e5bd38e96c9b434cded930)
We will only do the first two cases, the third is analogous.
Case 1:
In this case,

Hence, choosing

suffices to get
.
Case 2:
In this case,

where we replaced
or
respectively with zero where it is not defined. Hence, choosing

suffices to get
.
Hence, we are given equicontinuity. Now we seek to apply the Arzelá–Ascoli theorem. To this end, we define
,
where
is sufficiently large such that
for all
. Then the Arzelá–Ascoli theorem states that there exists a subsequence of the sequence
which converges uniformly to a certain limit function
(which must hence be continuous, as uniform convergence preserves continuity). Call this sequence
. For all
we get the equation

and if we pass to the limit
, we obtain that
solves the problem on
. Indeed, this follows from
uniformly and theorem 2.5, as uniform convergence allows us to interchange limits and integration. In the same manner, we get that
solves the problem on
, and hence we have indeed constructed a solution on
.