Parallel Spectral Numerical Methods/Gray Scott
Background
[edit | edit source]
The above reaction-diffusion system describes the density of two chemicals ,( and ), reacting with another. First term in the equations is for the diffusion, the second describes the reaction of and ,( → ) and the last term in the first equation is the input of new , while in the second the last term removes from the system.
Matlab Program
[edit | edit source]The program solves the linear part with fourier transformation and the nonlinear part with the implicit midpoint rule.
|
(
) |
% A program to solve the Gray-Scott equations using
% splitting method. The nonlinear equations are solved using the implicit
% midpoint rule
clear all; format compact, format short,
set(0,'defaultaxesfontsize',17,'defaultaxeslinewidth',.7,...
'defaultlinelinewidth',3.5,'defaultpatchlinewidth',3.5)
Nx =64; % number of modes
Ny=64;
Nz=64;
% set up grid
Nt=4;
tmax=0.04;
Lx = 1.5; % period 2*pi * L
Ly =1.5;
Lz=1.5;
dt = tmax/Nt; % number of time slices
tol=0.1^12;
A = 0.04;
B = 0.1;
Du = 1.;
Dv = 1.;
% initialise variables
x = (2*pi/Nx)*(-Nx/2:Nx/2 -1)'*Lx; % x coordinate
y = (2*pi/Ny)*(-Nx/2:Ny/2 -1)'*Ly;
z = (2*pi/Nz)*(-Nx/2:Nz/2 -1)'*Lz;
kx = i*[0:Nx/2-1 0 -Nx/2+1:-1]'/Lx; % wave vector
ky = i*[0:Ny/2-1 0 -Ny/2+1:-1]'/Ly;
kz = i*[0:Nz/2-1 0 -Nz/2+1:-1]'/Lz;
[xx,yy,zz]=meshgrid(x,y,z);
[kxx,kyy,kzz]=meshgrid(kx,ky,kz);
% initial conditions
t=0; tdata(1)=t;
u = 0.2 + exp(-2*(xx.^2+yy.^2+zz.^2));
v = 0.1 + exp(-4*(xx.^2+yy.^2+zz.^2-0.01).^2);
gamma=[1];
Ahat=A*fftn(ones(size(xx)));
t=0;
figure(11); clf;
subplot(2,1,1);
H = vol3d('CData',real(u),'texture','3D','XData',x,'YData',y,'ZData',z);
xlabel('x'); ylabel('y'); zlabel('z'); colorbar;
axis equal; axis square; view(3);
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; axis square; view(3); drawnow;
title(['Time ',num2str(t)]);
subplot(2,1,2);
H = vol3d('CData',real(v),'texture','3D','XData',x,'YData',y,'ZData',z);
xlabel('x'); ylabel('y'); zlabel('z'); colorbar;
axis equal; axis square; view(3);
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; axis square; view(3); drawnow;
filename=['./pictures1/',num2str(10000000),'.jpg'];
saveas(11,filename)
for n=1:Nt
chg=1;
for m=1:1
% use fixed point iteration to solve nonlinear system in real space
chg=1;
uold=u; vold=v;
while (chg>tol)
utemp=u; vtemp=v;
umean=0.5*(u+uold);
vmean=0.5*(v+vold);
u=uold+0.5*gamma(m)*dt*(-umean.*vmean.^2);
v=vold+0.5*gamma(m)*dt*umean.*vmean.^2;
chg=max(abs(u-utemp))+max(abs(v-vtemp));
end
uhat=fftn(u); vhat=fftn(v); % solve linear part exactly in Fourier space
uhat=exp(gamma(m)*dt*(-A+Du*(kxx.^2+kyy.^2+kzz.^2))).*...
(uhat-Ahat./(A+Du*(kxx.^2+kyy.^2+kzz)))+Ahat./...
(A+Du*(kxx.^2+kyy.^2+kzz.^2));
vhat=exp(gamma(m)*dt*(-B+Dv*(kxx.^2+kyy.^2+kzz.^2))).*vhat;
u=ifftn(uhat); v=ifftn(vhat);
% use fixed point iteration to solve nonlinear system in real space
chg=1;
uold=u; vold=v;
while (chg>tol)
utemp=u; vtemp=v;
umean=0.5*(u+uold);
vmean=0.5*(v+vold);
u=uold+0.5*gamma(m)*dt*(-umean.*vmean.^2);
v=vold+0.5*gamma(m)*dt*umean.*vmean.^2;
chg=max(abs(u-utemp))+max(abs(v-vtemp));
end
end
t=n*dt;
figure(11); clf;
subplot(2,1,1);
H = vol3d('CData',real(u),'texture','3D','XData',x,'YData',y,'ZData',z);
xlabel('x'); ylabel('y'); zlabel('z'); colorbar;
axis equal; axis square; view(3);
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; axis square; view(3); drawnow;
title(['Time ',num2str(t)]);
subplot(2,1,2);
H = vol3d('CData',real(v),'texture','3D','XData',x,'YData',y,'ZData',z);
xlabel('x'); ylabel('y'); zlabel('z'); colorbar;
axis equal; axis square; view(3);
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; axis square; view(3); drawnow;
filename=['./pictures1/',num2str(1000000+n),'.jpg'];
saveas(11,filename)
end
To compute the visualisation download vol3d.m [2].
Fortran Program
[edit | edit source]The program uses 2decomp_fft like the programs from previous chapters.
|
(
) |
!--------------------------------------------------------------------
!
!
! PURPOSE
!
! This program solves GrayScott equation in 3 dimensions
! u_t=D_u*(u_{xx}+u_{yy}+u_{zz})^2-u*v^2-F*(1-u)
! v_t=D_v*(v_{xx}+v_{yy}+v_{zz})^2+u*v^2-(F+k)*v
!
!
! .. Parameters ..
! Nx = number of modes in x - power of 2 for FFT
! Ny = number of modes in y - power of 2 for FFT
! Nz = number of modes in z - power of 2 for FFT
! Nt = number of timesteps to take
! Tmax = maximum simulation time
! plotgap = number of timesteps between plots
! pi = 3.14159265358979323846264338327950288419716939937510d0
! Lx = width of box in x direction
! Ly = width of box in y direction
! Lz = width of box in z direction
! A =F
! B =F+k
! .. Scalars ..
! Ahat = Fourier transform of A
! i = loop counter in x direction
! j = loop counter in y direction
! k = loop counter in z direction
! n = loop counter for timesteps direction
! allocatestatus = error indicator during allocation
! start = variable to record start time of program
! finish = variable to record end time of program
! count_rate = variable for clock count rate
! dt = timestep
! modescalereal = Number to scale after backward FFT
! myid = Process id
! ierr = error code
! p_row = number of rows for domain decomposition
! p_col = number of columns for domain decomposition
! filesize = total filesize
! disp = displacement to start writing data from
! ind = index in array to write
! plotnum = number of plot to save
! numberfile = number of the file to be saved to disk
! stat = error indicator when reading inputfile
! umean = temporary for fix point iteration
! vmean = temporary for fix point iteration
! .. Arrays ..
! u = approximate solution u
! v = approximate solution v
! uold = previous timestep of u
! vold = previous timestep of v
! utemp = temporary for fix point iteration u
! vtemp = temporary for fix point iteration v
! uhat = Fourier transform of u
! vhat = Fourier transform of v
! .. Vectors ..
! kx = fourier frequencies in x direction squared
! ky = fourier frequencies in y direction squared
! kz = fourier frequencies in z direction squared
! x = x locations
! y = y locations
! z = z locations
! time = times at which save data
! nameconfig = array to store filename for data to be saved
! InputFileName = name of the Input File
! dpcomm
! intcomm
! .. Special Structures ..
! decomp = contains information on domain decomposition
! sp see http://www.2decomp.org/ for more information
!
! REFERENCES
!
! ACKNOWLEDGEMENTS
!
! ACCURACY
!
! ERROR INDICATORS AND WARNINGS
!
! FURTHER COMMENTS
! Check that the initial iterate is consistent with the
! boundary conditions for the domain specified
!--------------------------------------------------------------------
! External routines required
!
! External libraries required
! 2DECOMP&FFT -- Domain decomposition and Fast Fourier Library
! (http://www.2decomp.org/index.html)
! MPI library
PROGRAM main
USE decomp_2d
USE decomp_2d_fft
USE decomp_2d_io
USE MPI
! Declare variables
IMPLICIT NONE
INTEGER(kind=4) :: Nx=0
INTEGER(kind=4) :: Ny=0
INTEGER(kind=4) :: Nz=0
INTEGER(kind=4) :: Nt=0
INTEGER(kind=4) :: plotgap=0
REAL(kind=8), PARAMETER ::&
pi=3.14159265358979323846264338327950288419716939937510d0
REAL(kind=8) :: Lx=0.0,Ly=0.0,Lz=0.0
REAL(kind=8) :: dt=0.0
REAL(kind=8) :: tol=0.1**12
REAL(kind=8) :: A=0.0
REAL(kind=8) :: Ahat=0
REAL(kind=8) :: B=0.0
REAL(kind=8) :: Du=0.0
REAL(kind=8) :: Dv=0.0
REAL(kind=8) :: chg=1.0
REAL(kind=8), DIMENSION(:), ALLOCATABLE :: kx,ky,kz
REAL(kind=8), DIMENSION(:), ALLOCATABLE :: x,y,z
REAL(kind=8), DIMENSION(:,:,:), ALLOCATABLE :: u,v
REAL(kind=8), DIMENSION(:,:,:), ALLOCATABLE :: uold,vold
REAL(kind=8) :: utemp,vtemp
COMPLEX(kind=8), DIMENSION(:,:,:), ALLOCATABLE :: uhat,vhat
COMPLEX(kind=8) :: uhatmp
REAL(kind=8) :: umean,vmean
REAL(kind=8), DIMENSION(:), ALLOCATABLE :: time
INTEGER(KIND=4), DIMENSION(1:5) :: intcomm
REAL(KIND=8), DIMENSION(1:8) :: dpcomm
REAL(kind=8) :: modescalereal
INTEGER(kind=4) :: i,j,k,n,AllocateStatus,stat
INTEGER(kind=4) :: myid,numprocs,ierr
TYPE(DECOMP_INFO) :: decomp,sp
INTEGER(kind=MPI_OFFSET_KIND) :: filesize, disp
INTEGER(kind=4) :: p_row=0, p_col=0
INTEGER(kind=4) :: start, finish, count_rate, ind, plotnum
CHARACTER*50 :: nameconfig
CHARACTER*20 :: numberfile, InputFileName
! initialisation of MPI
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
CALL MPI_BCAST(stat,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
IF(myid.eq.0) THEN
InputFileName='INPUTFILE'
OPEN(unit=11,FILE=trim(InputFileName),status="OLD")
REWIND(11)
READ(11,*) intcomm(1), intcomm(2), intcomm(3), intcomm(4),intcomm(5),&
dpcomm(1), dpcomm(2), dpcomm(3), dpcomm(4), dpcomm(5), &
dpcomm(6), dpcomm(7), dpcomm(8)
CLOSE(11)
PRINT *,"NX ",intcomm(1)
PRINT *,"NY ",intcomm(2)
PRINT *,"NZ ",intcomm(3)
PRINT *,"NT ",intcomm(4)
PRINT *,"plotgap ",intcomm(5)
PRINT *,"Lx",dpcomm(1)
PRINT *,"Ly",dpcomm(2)
PRINT *,"Lz",dpcomm(3)
PRINT *,"dt",dpcomm(4)
PRINT *,"Du",dpcomm(5)
PRINT *,"Dv",dpcomm(6)
PRINT *,"F",dpcomm(7)
PRINT *,"k",dpcomm(8)
PRINT *,"Read inputfile"
END IF
CALL MPI_BCAST(dpcomm,8,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr)
CALL MPI_BCAST(intcomm,5,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
Nx=intcomm(1)
Ny=intcomm(2)
Nz=intcomm(3)
Nt=intcomm(4)
plotgap=intcomm(5)
Lx=dpcomm(1)
Ly=dpcomm(2)
Lz=dpcomm(3)
dt=dpcomm(4)
Du=dpcomm(5)
Dv=dpcomm(6)
A=dpcomm(7)
B=dpcomm(8)+dpcomm(7)
! initialisation of 2decomp
! do automatic domain decomposition
CALL decomp_2d_init(Nx,Ny,Nz,p_row,p_col)
! get information about domain decomposition choosen
CALL get_decomp_info(decomp) ! physical domain
CALL decomp_info_init(Nx/2+1,Ny,Nz,sp) ! spectral domain
! initialise FFT library
CALL decomp_2d_fft_init
ALLOCATE(u(decomp%xst(1):decomp%xen(1),&
decomp%xst(2):decomp%xen(2),&
decomp%xst(3):decomp%xen(3)),&
v(decomp%xst(1):decomp%xen(1),&
decomp%xst(2):decomp%xen(2),&
decomp%xst(3):decomp%xen(3)),&
uold(decomp%xst(1):decomp%xen(1),&
decomp%xst(2):decomp%xen(2),&
decomp%xst(3):decomp%xen(3)),&
vold(decomp%xst(1):decomp%xen(1),&
decomp%xst(2):decomp%xen(2),&
decomp%xst(3):decomp%xen(3)),&
uhat(sp%zst(1):sp%zen(1),&
sp%zst(2):sp%zen(2),&
sp%zst(3):sp%zen(3)),&
vhat(sp%zst(1):sp%zen(1),&
sp%zst(2):sp%zen(2),&
sp%zst(3):sp%zen(3)),&
kx(sp%zst(1):sp%zen(1)), &
ky(sp%zst(2):sp%zen(2)), &
kz(sp%zst(3):sp%zen(3)), &
x(decomp%xst(1):decomp%xen(1)),&
y(decomp%xst(2):decomp%xen(2)),&
z(decomp%xst(3):decomp%xen(3)),&
time(1:1+Nt/plotgap),&
stat=AllocateStatus)
IF (AllocateStatus .ne. 0) STOP
IF (myid.eq.0) THEN
PRINT *,'allocated space'
END IF
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)
modescalereal=1.0d0/REAL(Nx,KIND(0d0))
modescalereal=modescalereal/REAL(Ny,KIND(0d0))
modescalereal=modescalereal/REAL(Nz,KIND(0d0))
! setup fourier frequencies and grid points
DO i = 1,1+ Nx/2
IF ((i.GE.sp%zst(1)).AND.(i.LE.sp%zen(1))) THEN
kx(i)=-(REAL(i-1,kind(0d0))/Lx)**2
END IF
END DO
IF ((Nx/2 + 1 .GE.sp%zst(1)).AND.(Nx/2 + 1 .LE.sp%zen(1))) THEN
kx( Nx/2 + 1 ) = 0.0d0
END IF
DO i = Nx/2+2, Nx
IF ((i.GE.sp%zst(1)).AND.(i.LE.sp%zen(1))) THEN
Kx( i) = -(REAL(1-i+Nx,KIND(0d0))/Lx)**2
END IF
END DO
DO i=decomp%xst(1),decomp%xen(1)
x(i)=(-1.0d0 + 2.0d0*REAL(i-1,kind(0d0))/REAL(Nx,kind(0d0)))*pi*Lx
END DO
DO j = 1,1+ Ny/2
IF ((j.GE.sp%zst(2)).AND.(j.LE.sp%zen(2))) THEN
ky(j)= -(REAL(j-1,kind(0d0))/Ly)**2
END IF
END DO
IF ((Ny/2 + 1 .GE.sp%zst(2)).AND.(Ny/2 + 1 .LE.sp%zen(2))) THEN
ky( Ny/2 + 1 ) = 0.0d0
ENDIF
DO j = Ny/2+2, Ny
IF ((j.GE.sp%zst(2)).AND.(j.LE.sp%zen(2))) THEN
ky(j) = -(REAL(1-j+Ny,KIND(0d0))/Ly)**2
END IF
END DO
DO j=decomp%xst(2),decomp%xen(2)
y(j)=(-1.0d0 + 2.0d0*REAL(j-1,kind(0d0))/REAL(Ny,kind(0d0)))*pi*Ly
END DO
DO k = 1,1+ Nz/2
IF ((k.GE.sp%zst(3)).AND.(k.LE.sp%zen(3))) THEN
kz(k)= -(REAL(k-1,kind(0d0))/Lz)**2
END IF
END DO
IF ((Nz/2 + 1 .GE.sp%zst(3)).AND.(Nz/2 + 1 .LE.sp%zen(3))) THEN
kz( Nz/2 + 1 ) = 0.0d0
ENDIF
DO k = Nz/2+2, Nz
IF ((k.GE.sp%zst(3)).AND.(k.LE.sp%zen(3))) THEN
kz(k) = -(REAL(1-k+Nz,KIND(0d0))/Lz)**2
END IF
END DO
DO k=decomp%xst(3),decomp%xen(3)
z(k)=(-1.0d0 + 2.0d0*REAL(k-1,kind(0d0))/REAL(Nz,kind(0d0)))*pi*Lz
END DO
IF (myid.eq.0) THEN
PRINT *,'Setup grid and fourier frequencies'
END IF
!compute Ahat
Ahat=A*Nx*Ny*Nz
!initial condition
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)
DO k=decomp%xst(3),decomp%xen(3)
DO j=decomp%xst(2),decomp%xen(2)
DO i=decomp%xst(1),decomp%xen(1)
u(i,j,k)=1+(exp(-1*(x(i)**2+y(j)**2+z(k)**2)-1))
v(i,j,k)=0+(exp(-1*(x(i)**2+y(j)**2+z(k)**2)-1))
END DO
END DO
END DO
! write out using 2DECOMP&FFT MPI-IO routines
nameconfig='./data/u'
plotnum=0
WRITE(numberfile,'(i0)') 10000000+plotnum
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//numberfile
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//'.datbin'
CALL decomp_2d_write_one(1,u,nameconfig)
!same for v
nameconfig='./data/v'
plotnum=0
WRITE(numberfile,'(i0)') 10000000+plotnum
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//numberfile
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//'.datbin'
CALL decomp_2d_write_one(1,v,nameconfig)
IF (myid.eq.0) THEN
PRINT *,'Got initial data, starting timestepping'
END IF
CALL system_clock(start,count_rate)
time(1)=0
DO n=1,Nt
!use fixed point iteration to solve nonlinear system in real space
DO k=decomp%xst(3),decomp%xen(3)
DO j=decomp%xst(2),decomp%xen(2)
DO i=decomp%xst(1),decomp%xen(1)
uold(i,j,k)=u(i,j,k)
vold(i,j,k)=v(i,j,k)
END DO
END DO
END DO
DO k=decomp%xst(3),decomp%xen(3)
DO j=decomp%xst(2),decomp%xen(2)
DO i=decomp%xst(1),decomp%xen(1)
chg=1
DO WHILE (chg>tol)
utemp=u(i,j,k)
vtemp=v(i,j,k)
umean=0.5*(u(i,j,k)+uold(i,j,k))
vmean=0.5*(v(i,j,k)+vold(i,j,k))
u(i,j,k)=uold(i,j,k)+0.5*dt*(-umean*vmean**2)
v(i,j,k)=vold(i,j,k)+0.5*dt*(umean*vmean**2)
utemp=u(i,j,k)-utemp
vtemp=v(i,j,k)-vtemp
chg=abs(utemp)+abs(vtemp)
END DO
END DO
END DO
END DO
! solve linear part exactly in Fourier space
CALL decomp_2d_fft_3d(u,uhat)
CALL decomp_2d_fft_3d(v,vhat)
IF (myid.eq.0) THEN
uhatmp=uhat(1,1,1)
END IF
DO k=sp%zst(3),sp%zen(3)
DO j=sp%zst(2),sp%zen(2)
DO i=sp%zst(1),sp%zen(1)
uhat(i,j,k)=exp(dt*(-A+Du*(kx(i)+ky(j)+kz(k))))*&
uhat(i,j,k)
vhat(i,j,k)=exp(dt*(-B+Dv*(kx(i)+ky(j)+kz(k))))*&
vhat(i,j,k)
END DO
END DO
END DO
IF (myid.eq.0) THEN
uhat(1,1,1)=exp(dt*(-A+Du*(kx(1)+ky(1)+kz(1))))*&
(uhatmp-Ahat/(A+Du*(kx(1)+ky(1)+kz(1))))+&
(Ahat/(A+Du*(kx(1)+ky(1)+kz(1))))
END IF
!dont forget to scale
CALL decomp_2d_fft_3d(uhat,u)
CALL decomp_2d_fft_3d(vhat,v)
DO k=decomp%xst(3),decomp%xen(3)
DO j=decomp%xst(2),decomp%xen(2)
DO i=decomp%xst(1),decomp%xen(1)
u(i,j,k)=u(i,j,k)*modescalereal
v(i,j,k)=v(i,j,k)*modescalereal
END DO
END DO
END DO
!use fixed point iteration to solve nonlinear system in real space
DO k=decomp%xst(3),decomp%xen(3)
DO j=decomp%xst(2),decomp%xen(2)
DO i=decomp%xst(1),decomp%xen(1)
uold(i,j,k)=u(i,j,k)
vold(i,j,k)=v(i,j,k)
END DO
END DO
END DO
DO k=decomp%xst(3),decomp%xen(3)
DO j=decomp%xst(2),decomp%xen(2)
DO i=decomp%xst(1),decomp%xen(1)
chg=1
DO WHILE (chg>tol)
utemp=u(i,j,k)
vtemp=v(i,j,k)
umean=0.5*(u(i,j,k)+uold(i,j,k))
vmean=0.5*(v(i,j,k)+vold(i,j,k))
u(i,j,k)=uold(i,j,k)+0.5*dt*(-umean*vmean**2)
v(i,j,k)=vold(i,j,k)+0.5*dt*(umean*vmean**2)
utemp=u(i,j,k)-utemp
vtemp=v(i,j,k)-vtemp
chg=abs(utemp)+abs(vtemp)
END DO
END DO
END DO
END DO
!write data
IF (mod(n,plotgap)==0) THEN
time(1+n/plotgap)=n*dt
IF (myid.eq.0) THEN
PRINT *,'time',n*dt
END IF
nameconfig='./data/u'
plotnum=plotnum+1
WRITE(numberfile,'(i0)') 10000000+plotnum
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//numberfile
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//'.datbin'
!write out using 2DECOMP&FFT MPI-IO routines
CALL decomp_2d_write_one(1,u,nameconfig)
nameconfig='./data/v'
WRITE(numberfile,'(i0)') 10000000+plotnum
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//numberfile
ind=index(nameconfig,' ') -1
nameconfig=nameconfig(1:ind)//'.datbin'
!write out using 2DECOMP&FFT MPI-IO routines
CALL decomp_2d_write_one(1,v,nameconfig)
END IF
END DO
IF (myid.eq.0) THEN
PRINT *,'Finished time stepping'
END IF
CALL system_clock(finish,count_rate)
IF (myid.eq.0) THEN
PRINT*,'Program took ',REAL(finish-start)/REAL(count_rate),'for execution'
END IF
IF (myid.eq.0) THEN
! Save times at which output was made in text format
nameconfig = './data/tdata.dat'
OPEN(unit=11,FILE=nameconfig,status="UNKNOWN")
REWIND(11)
DO j=1,1+Nt/plotgap
WRITE(11,*) time(j)
END DO
CLOSE(11)
! Save x grid points in text format
nameconfig = './data/xcoord.dat'
OPEN(unit=11,FILE=nameconfig,status="UNKNOWN")
REWIND(11)
DO i=1,Nx
WRITE(11,*) x(i)
END DO
CLOSE(11)
! Save y grid points in text format
nameconfig = './data/ycoord.dat'
OPEN(unit=11,FILE=nameconfig,status="UNKNOWN")
REWIND(11)
DO j=1,Ny
WRITE(11,*) y(j)
END DO
CLOSE(11)
! Save z grid points in text format
nameconfig = './data/zcoord.dat'
OPEN(unit=11,FILE=nameconfig,status="UNKNOWN")
REWIND(11)
DO k=1,Nz
WRITE(11,*) z(k)
END DO
CLOSE(11)
PRINT *,'Saved data'
END IF
! clean up
CALL decomp_2d_fft_finalize
CALL decomp_2d_finalize
DEALLOCATE(u,v,uold,vold,uhat,vhat,&
kx,ky,kz,x,y,z,&
time,stat=AllocateStatus)
IF (AllocateStatus .ne. 0) STOP
IF (myid.eq.0) THEN
PRINT *,'Program execution complete'
END IF
CALL MPI_FINALIZE(ierr)
END PROGRAM main
OpenCL
[edit | edit source]In OpenCL[3] you write a 'Kernel' to do the intense work in parallel. You can choose to run the kernel on your cpu, gpu or some other coprocessor. The kernel is compiled during runtime for the device you have choosen.
To run the following code you need an valid OpenCL 1.2 framework for example AMD APP SDK [4] which runs also on non AMD CPU's. You also need clfft[5] an implementation of the FFT for OpenCL.
|
(
) |
#include "clFFT.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
#include "gs_functions.c"
#if defined(cl_amd_fp64) || defined(cl_khr_fp64)
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#elif defined(cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
// function declarations/definitions using double precision floating-point arithmetic
#endif
int main(void) {
//time meassuring
struct timeval tvs;
//variables
int Nx=1024;
int Ny=1024;
int plotnum=0;
int Tmax=2;
int plottime=0;
int plotgap=1;
double Lx=1.0;
double Ly=1.0;
double dt=0.0;
double A=0.0;
double B=0.0;
double Du=0.0;
double Dv=0.0;
//splitting coefficients
double a=0.5;
double b=0.5;
double c=1.0;
//loop counters
int i=0;
int j=0;
int n=0;
double*umax=NULL;
double*vmax=NULL;
parainit(&Nx,&Ny,&Tmax,&plotgap,&Lx,&Ly,&dt,&Du,&Dv,&A,&B);
plottime=plotgap;
vmax=(double*)malloc((Tmax/plotgap+1)*sizeof(double));
umax=(double*)malloc((Tmax/plotgap+1)*sizeof(double));
//openCL variables
cl_platform_id *platform_id = NULL;
cl_kernel frequencies = NULL, initialdata = NULL, linearpart=NULL;
cl_kernel nonlinearpart_a=NULL, nonlinearpart_b=NULL;
cl_int ret;
cl_uint num_platforms;
// Detect how many platforms there are.
ret = clGetPlatformIDs(0, NULL, &num_platforms);
// Allocate enough space for the number of platforms.
platform_id = (cl_platform_id*) malloc(num_platforms*sizeof(cl_platform_id));
// Store the platforms
ret = clGetPlatformIDs(num_platforms, platform_id, NULL);
printf("Found %d platform(s)!\n",num_platforms);
cl_uint *num_devices;
num_devices=(cl_uint*) malloc(num_platforms*sizeof(cl_uint));
cl_device_id **device_id = NULL;
device_id =(cl_device_id**) malloc(num_platforms*sizeof(cl_device_id*));
// Detect number of devices in the platforms
for(i=0;i<num_platforms;i++){
char buf[65536];
size_t size;
ret = clGetPlatformInfo(platform_id[i],CL_PLATFORM_VERSION,sizeof(buf),buf,&size);
printf("%s\n",buf);
ret = clGetDeviceIDs(platform_id[i],CL_DEVICE_TYPE_ALL,0,NULL,num_devices);
printf("Found %d device(s) on platform %d!\n", num_devices[i],i);
ret = clGetPlatformInfo(platform_id[i],CL_PLATFORM_NAME,sizeof(buf),buf,&size);
printf("%s ",buf);
// Store numDevices from platform
device_id[i]=(cl_device_id*) malloc(num_devices[i]*sizeof(device_id));
ret = clGetDeviceIDs(platform_id[i],CL_DEVICE_TYPE_ALL,num_devices[i],device_id[i],NULL);
for(j=0;j<num_devices[i];j++){
ret = clGetDeviceInfo(device_id[i][j],CL_DEVICE_NAME,sizeof(buf),buf,&size);
printf("%s (%d,%d)\n",buf,i,j);
}
}
//create context and command_queue
cl_context context = NULL;
cl_command_queue command_queue = NULL;
//Which platform and device do i choose?
int chooseplatform=0;
int choosedevice=0;
printf("Choose platform %d and device %d!\n",chooseplatform,choosedevice);
context = clCreateContext( NULL, num_devices[chooseplatform], device_id[chooseplatform], NULL, NULL, &ret);
if(ret!=CL_SUCCESS){printf("createContext ret:%d\n",ret); exit(1); }
command_queue = clCreateCommandQueue(context, device_id[chooseplatform][choosedevice], 0, &ret);
if(ret!=CL_SUCCESS){printf("createCommandQueue ret:%d\n",ret); exit(1); }
//OpenCL arrays
cl_mem cl_u = NULL,cl_v = NULL;
cl_mem cl_uhat = NULL, cl_vhat = NULL;
cl_mem cl_kx = NULL, cl_ky = NULL;
//FFT
clfftPlanHandle planHandle;
cl_mem tmpBuffer = NULL;
fftinit(&planHandle,&context, &command_queue, &tmpBuffer, Nx, Ny);
//allocate gpu memory/
cl_u=clCreateBuffer(context, CL_MEM_READ_WRITE, 2*Nx* Ny* sizeof(double), NULL, &ret);
cl_v=clCreateBuffer(context, CL_MEM_READ_WRITE, 2*Nx* Ny* sizeof(double), NULL, &ret);
cl_uhat=clCreateBuffer(context, CL_MEM_READ_WRITE, 2*Nx * Ny* sizeof(double), NULL, &ret);
cl_vhat=clCreateBuffer(context, CL_MEM_READ_WRITE, 2*Nx * Ny* sizeof(double), NULL, &ret);
cl_kx = clCreateBuffer(context, CL_MEM_READ_WRITE, Nx * sizeof(double), NULL, &ret);
cl_ky = clCreateBuffer(context, CL_MEM_READ_WRITE, Ny * sizeof(double), NULL, &ret);
printf("allocated space\n");
//load the kernels
loadKernel(&frequencies,&context,&device_id[chooseplatform][choosedevice],"frequencies");
loadKernel(&initialdata,&context,&device_id[chooseplatform][choosedevice],"initialdata");
loadKernel(&linearpart,&context,&device_id[chooseplatform][choosedevice],"linearpart");
loadKernel(&nonlinearpart_a,&context,&device_id[chooseplatform][choosedevice],"nonlinearpart_a");
loadKernel(&nonlinearpart_b,&context,&device_id[chooseplatform][choosedevice],"nonlinearpart_b");
size_t global_work_size[1] = {Nx*Ny};
size_t global_work_size_X[1] = {Nx};
size_t global_work_size_Y[1] = {Ny};
//frequencies
ret = clSetKernelArg(frequencies, 0, sizeof(cl_mem),(void *)&cl_kx);
ret = clSetKernelArg(frequencies, 1, sizeof(double),(void* )&Lx);
ret = clSetKernelArg(frequencies, 2, sizeof(int),(void* )&Nx);
ret = clEnqueueNDRangeKernel(command_queue, frequencies, 1, NULL, global_work_size_X, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
ret = clSetKernelArg(frequencies, 0, sizeof(cl_mem),(void *)&cl_ky);
ret = clSetKernelArg(frequencies, 1, sizeof(double),(void* )&Ly);
ret = clSetKernelArg(frequencies, 2, sizeof(int),(void* )&Ny);
ret = clEnqueueNDRangeKernel(command_queue, frequencies, 1, NULL, global_work_size_Y, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
//printCL(&cl_kx,&command_queue,Nx,1);
//printCL(&cl_ky,&command_queue,1,Ny);
//inintial data
ret = clSetKernelArg(initialdata, 0, sizeof(cl_mem),(void *)&cl_u);
ret = clSetKernelArg(initialdata, 1, sizeof(cl_mem),(void* )&cl_v);
ret = clSetKernelArg(initialdata, 2, sizeof(int),(void* )&Nx);
ret = clSetKernelArg(initialdata, 3, sizeof(int),(void* )&Ny);
ret = clSetKernelArg(initialdata, 4, sizeof(double),(void* )&Lx);
ret = clSetKernelArg(initialdata, 5, sizeof(double),(void* )&Ly);
ret = clEnqueueNDRangeKernel(command_queue, initialdata, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
//make output
writedata_C(&cl_u, &command_queue,Nx,Ny,plotnum,"u");
writedata_C(&cl_v, &command_queue,Nx,Ny,plotnum,"v");
umax[plotnum]=writeimage(&cl_u, &command_queue,Nx,Ny,plotnum,"u");
vmax[plotnum]=writeimage(&cl_v, &command_queue,Nx,Ny,plotnum,"v");
printf("Got initial data, starting timestepping\n");
mtime_s(&tvs);
for(n=0;n<=Tmax;n++){
//nonlinearpart_a
ret = clSetKernelArg(nonlinearpart_a, 0, sizeof(cl_mem),(void *)&cl_u);
ret = clSetKernelArg(nonlinearpart_a, 1, sizeof(cl_mem),(void* )&cl_v);
ret = clSetKernelArg(nonlinearpart_a, 2, sizeof(double),(void* )&A);
ret = clSetKernelArg(nonlinearpart_a, 3, sizeof(double),(void* )&dt);
ret = clSetKernelArg(nonlinearpart_a, 4, sizeof(double),(void* )&a);
ret = clEnqueueNDRangeKernel(command_queue, nonlinearpart_a, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
//nonlinearpart_b
ret = clSetKernelArg(nonlinearpart_b, 0, sizeof(cl_mem),(void *)&cl_u);
ret = clSetKernelArg(nonlinearpart_b, 1, sizeof(cl_mem),(void* )&cl_v);
ret = clSetKernelArg(nonlinearpart_b, 2, sizeof(double),(void* )&A);
ret = clSetKernelArg(nonlinearpart_b, 3, sizeof(double),(void* )&dt);
ret = clSetKernelArg(nonlinearpart_b, 4, sizeof(double),(void* )&b);
ret = clEnqueueNDRangeKernel(command_queue, nonlinearpart_b, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
//linear
fft2dfor(&cl_u, &cl_uhat,&planHandle,&command_queue,&tmpBuffer);
fft2dfor(&cl_v, &cl_vhat,&planHandle,&command_queue,&tmpBuffer);
//printf("A%f,B%f\n",A,B);
ret = clSetKernelArg(linearpart, 0, sizeof(cl_mem),(void *)&cl_uhat);
ret = clSetKernelArg(linearpart, 1, sizeof(cl_mem),(void *)&cl_vhat);
ret = clSetKernelArg(linearpart, 2, sizeof(cl_mem),(void* )&cl_kx);
ret = clSetKernelArg(linearpart, 3, sizeof(cl_mem),(void* )&cl_ky);
ret = clSetKernelArg(linearpart, 4, sizeof(double),(void* )&Du);
ret = clSetKernelArg(linearpart, 5, sizeof(double),(void* )&Dv);
ret = clSetKernelArg(linearpart, 6, sizeof(double),(void* )&A);
ret = clSetKernelArg(linearpart, 7, sizeof(double),(void* )&B);
ret = clSetKernelArg(linearpart, 8, sizeof(double),(void* )&dt);
ret = clSetKernelArg(linearpart, 9, sizeof(double),(void* )&c);
ret = clSetKernelArg(linearpart, 10, sizeof(int),(void* )&Nx);
ret = clSetKernelArg(linearpart, 11, sizeof(int),(void* )&Ny);
ret = clEnqueueNDRangeKernel(command_queue, linearpart, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
fft2dback(&cl_u, &cl_uhat,&planHandle,&command_queue,&tmpBuffer);
fft2dback(&cl_v, &cl_vhat,&planHandle,&command_queue,&tmpBuffer);
//nonlinearpart_b
ret = clSetKernelArg(nonlinearpart_b, 0, sizeof(cl_mem),(void *)&cl_u);
ret = clSetKernelArg(nonlinearpart_b, 1, sizeof(cl_mem),(void* )&cl_v);
ret = clSetKernelArg(nonlinearpart_b, 2, sizeof(double),(void* )&A);
ret = clSetKernelArg(nonlinearpart_b, 3, sizeof(double),(void* )&dt);
ret = clSetKernelArg(nonlinearpart_b, 4, sizeof(double),(void* )&b);
ret = clEnqueueNDRangeKernel(command_queue, nonlinearpart_b, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
//nonlinearpart_a
ret = clSetKernelArg(nonlinearpart_a, 0, sizeof(cl_mem),(void *)&cl_u);
ret = clSetKernelArg(nonlinearpart_a, 1, sizeof(cl_mem),(void* )&cl_v);
ret = clSetKernelArg(nonlinearpart_a, 2, sizeof(double),(void* )&A);
ret = clSetKernelArg(nonlinearpart_a, 3, sizeof(double),(void* )&dt);
ret = clSetKernelArg(nonlinearpart_a, 4, sizeof(double),(void* )&a);
ret = clEnqueueNDRangeKernel(command_queue, nonlinearpart_a, 1, NULL, global_work_size, NULL, 0, NULL, NULL);
ret = clFinish(command_queue);
// done
if(n==plottime){
printf("time:%f, step:%d,%d,umax:%f,vmax:%f\n",n*dt,n,plotnum,umax[plotnum],vmax[plotnum]);
plottime=plottime+plotgap;
plotnum=plotnum+1;
writedata_C(&cl_u, &command_queue,Nx,Ny,plotnum,"u");
writedata_C(&cl_v, &command_queue,Nx,Ny,plotnum,"v");
umax[plotnum]=writeimage(&cl_u, &command_queue,Nx,Ny,plotnum,"u");
vmax[plotnum]=writeimage(&cl_v, &command_queue,Nx,Ny,plotnum,"v");
}
}//end timestepping
printf("Finished time stepping\n");
mtime_e(&tvs,"Programm took:");
writearray(umax,(Tmax/plotgap)+1,"u");
writearray(vmax,(Tmax/plotgap)+1,"v");
free(umax);
free(vmax);
clReleaseMemObject(cl_u);
clReleaseMemObject(cl_v);
clReleaseMemObject(cl_uhat);
clReleaseMemObject(cl_vhat);
clReleaseMemObject(cl_kx);
clReleaseMemObject(cl_ky);
ret = clReleaseKernel(initialdata);
ret = clReleaseKernel(frequencies);
ret = clReleaseKernel(linearpart);
ret = clReleaseKernel(nonlinearpart_a);
ret = clReleaseKernel(nonlinearpart_b);
fftdestroy(&planHandle, &tmpBuffer);
ret = clReleaseCommandQueue(command_queue);
ret = clReleaseContext(context);
for(i=0;i<num_platforms;i++){free(device_id[i]);}
free(device_id);
free(platform_id);
free(num_devices);
printf("Program execution complete\n");
return 0;
}
You can change "chooseplatform" and "choosedevice" to the device you want to compute on.
|
(
) |
//
//
//
//This file contains only functions for main_gs.c
//
//
#include <CL/cl.h>
#include <sys/time.h>
#include <string.h>
//read the INPUTFILE
void parainit(int * Nx, int * Ny, int * Tmax, int * plotgap, double * Lx, double * Ly, double * dt, double * Du, double * Dv, double * A, double *B ){
int intcomm[4];
double dpcomm[7];
char InputFileName[]="./INPUTFILE";
FILE*fp;
fp=fopen(InputFileName,"r");
if(!fp) {fprintf(stderr, "Failed to load IPUTFILE.\n");exit(1);}
int ierr=fscanf(fp, "%d %d %d %d %lf %lf %lf %lf %lf %lf %lf", &intcomm[0],&intcomm[1],&intcomm[2],&intcomm[3],&dpcomm[0],&dpcomm[1],&dpcomm[2],&dpcomm[3],&dpcomm[4],&dpcomm[5],&dpcomm[6]);
if(ierr!=11){fprintf(stderr, "INPUTFILE corrupted:%d\n",ierr);exit(1);}
fclose(fp);
printf("NX %d\nNY %d\nTmax %d\nplotgap %d\n",intcomm[0],intcomm[1],intcomm[2],intcomm[3]);
printf("Lx %lf\nLy %lf\ndt %lf\nDu %lf\nDv %lf\nF %lf\nk %lf\n",dpcomm[0],dpcomm[1],dpcomm[2],dpcomm[3],dpcomm[4],dpcomm[5],dpcomm[6]);
*Nx=intcomm[0];
*Ny=intcomm[1];
*Tmax=intcomm[2];
*plotgap=intcomm[3];
*Lx=dpcomm[0];
*Ly=dpcomm[1];
*dt=dpcomm[2];
*Du=dpcomm[3];
*Dv=dpcomm[4];
*A=dpcomm[5];
*B=dpcomm[5]+dpcomm[6];
printf("Read Inputfile\n");
};
//loads a kernel from a file
#define MAX_SOURCE_SIZE 8192
void loadKernel(cl_kernel *kernel,cl_context *context, cl_device_id *device_id, char*name){
cl_program p_kernel;
cl_int ret=0;
size_t source_size;
char *source_str;
char nameconfig[100];
int i=0;
source_str = (char *)malloc(MAX_SOURCE_SIZE*sizeof(char));
for(i=0;i<MAX_SOURCE_SIZE;i++){source_str[i]='\0';}
FILE* fp;
strcpy(nameconfig,"./");
strcat(nameconfig,name);
strcat(nameconfig,".cl");
fp = fopen(nameconfig, "r");
if (!fp) {fprintf(stderr, "Failed to load kernel.\n"); exit(1); }
source_size = fread( source_str, sizeof(char), MAX_SOURCE_SIZE, fp );
fclose( fp );
p_kernel = clCreateProgramWithSource(*context, 1, (const char **)&source_str, (const size_t *)&source_size, &ret);
if(ret!=CL_SUCCESS){printf("createProgram ret:%d\n",ret);exit(1); }
ret = clBuildProgram(p_kernel, 1, &*device_id, NULL, NULL, NULL);
if(ret!=CL_SUCCESS){printf("buildProgram ret:%d\n",ret); exit(1); }
*kernel = clCreateKernel(p_kernel, name, &ret);
if(ret!=CL_SUCCESS){printf("createKernel ret:%d\n",ret);exit(1); }
ret = clReleaseProgram(p_kernel);
if(ret!=CL_SUCCESS){printf("releaseProgram ret:%d\n",ret);exit(1); }
printf("got kernel %s\n",name);
free(source_str);
};
//displays an array on gpu memory (debug)
void printCL(cl_mem* cl_u,cl_command_queue* command_queue, int Nx,int Ny){
double* u;
int i=0;
int j=0;
cl_int ret=0;
u=(double*)malloc(Nx*Ny*sizeof(double));
ret = clEnqueueReadBuffer(*command_queue, *cl_u, CL_TRUE, 0, Nx*Ny*sizeof(double), u, 0, NULL, NULL);
ret = clFinish(*command_queue); if(ret!=CL_SUCCESS){printf("failed");}
for(i=0;i<Nx;i++){
for(j=0;j<Ny;j++){
printf("%f ",u[i+Nx*j]);
}
printf("\n");
}
printf("\n");
free(u);
};
//displays an real part of complex array on gpu memory (debug)
void printCL_C(cl_mem* cl_u,cl_command_queue* command_queue, int Nx,int Ny){
double* u;
int i=0;
int j=0;
cl_int ret=0;
u=(double*)malloc(2*Nx*Ny*sizeof(double));
ret = clEnqueueReadBuffer(*command_queue, *cl_u, CL_TRUE, 0, 2*Nx*Ny*sizeof(double), u, 0, NULL, NULL);
ret = clFinish(*command_queue);
if(ret!=CL_SUCCESS){printf("failed");}
for(i=0;i<Nx;i++){
for(j=0;j<Ny;j++){
printf("%f ",u[2*i+Nx*2*j]);
}
printf("\n");
}
printf("\n");
free(u);
};
//make plans for FFT
void fftinit(clfftPlanHandle *planHandle, cl_context* context, cl_command_queue* command_queue, cl_mem* tmpBuffer, int Nx,int Ny){
clfftDim dim = CLFFT_2D;
size_t clLength[2] = {Nx,Ny};
cl_int ret=0;
// Setup clFFT.
clfftSetupData fftSetup;
ret = clfftInitSetupData(&fftSetup);
if(ret!=CL_SUCCESS){printf("clFFT init ret:%d\n",ret);exit(1); }
ret = clfftSetup(&fftSetup);
if(ret!=CL_SUCCESS){printf("clFFT Setup ret:%d\n",ret);exit(1); }
// Create a default plan for a complex FFT.
ret = clfftCreateDefaultPlan(&*planHandle, *context, dim, clLength);
if(ret!=CL_SUCCESS){printf("clFFT Plan ret:%d\n",ret);exit(1); }
// Set plan parameters.
ret = clfftSetPlanPrecision(*planHandle, CLFFT_DOUBLE);
if(ret!=CL_SUCCESS){printf("clFFT Precision ret:%d\n",ret);exit(1); }
//ret = clfftSetPlanBatchSize(*planHandle, (size_t) Ny );
//if(ret!=CL_SUCCESS){printf("clFFT Batch ret:%d\n",ret);exit(1); }
ret = clfftSetLayout(*planHandle, CLFFT_COMPLEX_INTERLEAVED, CLFFT_COMPLEX_INTERLEAVED);
if(ret!=CL_SUCCESS){printf("clFFT Layout ret:%d\n",ret);exit(1); }
ret = clfftSetResultLocation(*planHandle, CLFFT_OUTOFPLACE);
if(ret!=CL_SUCCESS){printf("clFFT Place ret:%d\n",ret);exit(1); }
// Bake the plan.
ret = clfftBakePlan(*planHandle, 1, &*command_queue, NULL, NULL);
if(ret!=CL_SUCCESS){printf("clFFT Bake ret:%d\n",ret);exit(1); }
// Create temporary buffer.
// Size of temp buffer.
size_t tmpBufferSize = 0;
ret = clfftGetTmpBufSize(*planHandle, &tmpBufferSize);
if ((ret == CL_SUCCESS) && (tmpBufferSize > 0)) {
*tmpBuffer = clCreateBuffer(*context, CL_MEM_READ_WRITE, tmpBufferSize, NULL, &ret);
if (ret != CL_SUCCESS){printf("Error with tmpBuffer clCreateBuffer\n");exit(1);}
}
};
//destroy plans
void fftdestroy(clfftPlanHandle *planHandle,cl_mem* tmpBuffer){
cl_int ret=0;
clReleaseMemObject(*tmpBuffer);
ret = clfftDestroyPlan(&*planHandle);
if(ret!=0){printf("Error while destroying fft");exit(1);}
clfftTeardown();
};
//fft2dfoward
void fft2dfor(cl_mem *cl_u, cl_mem *cl_uhat, clfftPlanHandle *planHandle, cl_command_queue* command_queue, cl_mem* tmpBuffer){
int ret=0;
ret = clfftEnqueueTransform(*planHandle, CLFFT_FORWARD, 1, command_queue, 0, NULL, NULL,&*cl_u, &*cl_uhat, *tmpBuffer);
if (ret != CL_SUCCESS){printf("FFT failedA%d",ret);}
ret = clFinish(*command_queue);
if (ret != CL_SUCCESS){printf("FFT failedB%d",ret);}
};
//fft2dback
void fft2dback(cl_mem *cl_u, cl_mem *cl_uhat, clfftPlanHandle *planHandle, cl_command_queue* command_queue, cl_mem* tmpBuffer){
int ret=0;
ret = clfftEnqueueTransform(*planHandle, CLFFT_BACKWARD, 1, command_queue, 0, NULL, NULL,&*cl_uhat, &*cl_u, *tmpBuffer);
if (ret != CL_SUCCESS){printf("FFT failedC%d",ret);}
ret = clFinish(*command_queue);
if (ret != CL_SUCCESS){printf("FFT failedD%d",ret);}
};
//writes an image to disk and returns the maximum of cl_u
double writeimage(cl_mem* cl_u, cl_command_queue *command_queue, int Nx,int Ny, int plotnum, char* prefix){
int i=0;
cl_int ret=0;
int header=54;
double* u;
u=(double*)malloc(2*Nx*Ny*sizeof(double));
ret = clEnqueueReadBuffer(*command_queue, *cl_u, CL_TRUE, 0, 2*Nx*Ny * sizeof(double), u, 0, NULL, NULL);
ret = clFinish(*command_queue);
if(ret!=0){printf("Error hahah");}
double max=0.0;
for(i=0;i<Nx*Ny;i++){
if(u[2*i]>max){max=u[2*i];}
}
unsigned char*picture=(unsigned char*)malloc((3*Nx*Ny+header)*sizeof(unsigned char));
for(i=0;i<Nx*Ny;i++){
picture[3*i+header+0]=(unsigned char)(255*u[2*i]/max);
picture[3*i+header+1]=(unsigned char)(255*u[2*i]/max);
picture[3*i+header+2]=(unsigned char)(255*u[2*i]/max);
}
//header for bmp file
int w=Ny;
int h=Nx;
int padSize=(4-w%4)%4;
int filesize=header + 3*h*w+h*padSize;
unsigned char bmppad[3] = {0,0,0}; //padding
picture[ 0]='B';
picture[ 1]='M';
picture[ 2] = (unsigned char)(filesize );
picture[ 3] = (unsigned char)(filesize>> 8);
picture[ 4] = (unsigned char)(filesize>>16);
picture[ 5] = (unsigned char)(filesize>>24);
picture[ 6] = 0;
picture[ 7] = 0;
picture[ 8] = 0;
picture[ 9] = 0;
picture[10] = 54;
picture[11] = 0;
picture[12] = 0;
picture[13] = 0;
picture[14] = 40;
picture[15] = 0;
picture[16] = 0;
picture[17] = 0;//3
picture[18] = (unsigned char)( w );
picture[19] = (unsigned char)( w>> 8);
picture[20] = (unsigned char)( w>>16);
picture[21] = (unsigned char)( w>>24);
picture[22] = (unsigned char)( h );
picture[23] = (unsigned char)( h>> 8);
picture[24] = (unsigned char)( h>>16);
picture[25] = (unsigned char)( h>>24);
picture[26] = 1;
picture[27] = 0;
picture[28] = 24;
picture[29] = 0;
for(i=30;i<54;i++){
picture[i]=0;
}
FILE*fp;
//file name
char tmp_str[10];
char nameconfig[100];
strcpy(nameconfig,"./data/");
strcat(nameconfig,prefix);
sprintf(tmp_str,"%d",10000000+plotnum);
strcat(nameconfig,tmp_str);
strcat(nameconfig,".bmp");
fp=fopen(nameconfig,"wb");
if (!fp) {fprintf(stderr, "Failed to write data.\n"); exit(1); }
for(i=0;i<header;i++){fwrite(&picture[i], sizeof(unsigned char), 1, fp);}
for(i=0;i<h;i++){
fwrite(picture+(w*(h-i-1)*3)+header,3* sizeof(unsigned char), w, fp);
fwrite(bmppad,sizeof(unsigned char),(4-(w*3)%4)%4,fp);
}
fclose( fp );
free(picture);
free(u);
return max;
};
//writes the array to disk (debug)
void writedata(cl_mem* cl_u, cl_command_queue *command_queue, int Nx,int Ny, int plotnum,char* prefix){
int i=0;
cl_int ret=0;
double* u;
u=(double*)malloc(Nx*Ny*sizeof(double));
ret = clEnqueueReadBuffer(*command_queue, *cl_u, CL_TRUE, 0, Nx*Ny * sizeof(double), u, 0, NULL, NULL);
ret = clFinish(*command_queue);
if(ret!=0){printf("Error hahah");}
FILE*fp;
//file name
char tmp_str[10];
char nameconfig[100];
strcpy(nameconfig,"./data/");
strcat(nameconfig,prefix);
sprintf(tmp_str,"%d",10000000+plotnum);
strcat(nameconfig,tmp_str);
strcat(nameconfig,".datbin");
fp=fopen(nameconfig,"wb");
if (!fp) {fprintf(stderr, "Failed to write data.\n"); exit(1); }
for(i=0;i<Nx;i++){fwrite(u+i*Ny, sizeof(double), Ny, fp);}
fclose( fp );
free(u);
};
//writes the real part of complex array to disk
void writedata_C(cl_mem* cl_u, cl_command_queue *command_queue, int Nx,int Ny, int plotnum,char* prefix){
int i=0;
cl_int ret=0;
double* u;
u=(double*)malloc(2*Nx*Ny*sizeof(double));
ret = clEnqueueReadBuffer(*command_queue, *cl_u, CL_TRUE, 0, 2*Nx*Ny * sizeof(double), u, 0, NULL, NULL);
ret = clFinish(*command_queue);
if(ret!=0){printf("Error hahah");}
for(i=0;i<Nx*Ny;i++){u[i]=u[2*i];}
FILE*fp;
//file name
char tmp_str[10];
char nameconfig[100];
strcpy(nameconfig,"./data/");
strcat(nameconfig,prefix);
sprintf(tmp_str,"%d",10000000+plotnum);
strcat(nameconfig,tmp_str);
strcat(nameconfig,".datbin");
fp=fopen(nameconfig,"wb");
if (!fp) {fprintf(stderr, "Failed to write data.\n"); exit(1); }
for(i=0;i<Nx;i++){fwrite(u+i*Ny, sizeof(double), Ny, fp);}
fclose( fp );
free(u);
};
//loades the data from disk (debug)
void loaddata(cl_mem* cl_u, cl_command_queue *command_queue, int Nx,int Ny, char*name){
int i=0;
int numread=0;
cl_int ret=0;
double* u;
u=(double*)malloc(Nx*Ny*sizeof(double));
FILE*fp;
fp=fopen(name,"rb");
if (!fp) {fprintf(stderr, "Failed to open file.\n"); exit(1); }
for(i=0;i<Nx;i++){
numread=fread(u+i*Ny, sizeof(double), Ny, fp);
if (numread!=Ny) {fprintf(stderr, "Failed to read file.\n"); exit(1); }
}
fclose( fp );
ret = clEnqueueWriteBuffer(*command_queue, *cl_u, CL_TRUE, 0, Nx*Ny * sizeof(double), u, 0, NULL, NULL);
ret = clFinish(*command_queue);
if(ret!=0){printf("Error hahah");}
free(u);
};
//writes an array to disc ASCII
void writearray(double*u,int length,char* prefix){
int i=0;
char nameconfig[100];
strcpy(nameconfig,"./data/");
strcat(nameconfig,prefix);
FILE*fp;
fp=fopen(nameconfig,"w");
if (!fp) {fprintf(stderr, "Failed to write data.\n"); exit(1); }
for(i=0;i<length;i++){
fprintf(fp,"%.17g\n",u[i]);
}
};
//start measuring time
void mtime_s(struct timeval* tvs){
gettimeofday(&*tvs, NULL);
};
//end measuring time+ printing
void mtime_e(struct timeval* tvs, char* printme){
struct timeval tve;
double elapsedTime;
gettimeofday(&tve, NULL);
elapsedTime = (tve.tv_sec - (*tvs).tv_sec) * 1000.0; // sec to ms
elapsedTime += (tve.tv_usec - (*tvs).tv_usec) / 1000.0; // us to ms
printf("%s%lfms\n",printme,elapsedTime);
};
Now all the OpenCL-Kernel's, which should be saved in the same folder.
|
(
) |
#if defined(cl_amd_fp64) || defined(cl_khr_fp64)
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#elif defined(cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
// function declarations/definitions using double precision doubleing-point arithmetic
#endif
__kernel void initialdata ( __global double2* u, __global double2* v, const int Nx, const int Ny, const double Lx, const double Ly)
{
const int ind = get_global_id(0);
int i,j;
j=floor((double)(ind)/(double)Nx);
i=ind-j*Nx;
double x=(-1.0 + ( 2.0*(double)i/(double)Nx))*M_PI*Lx;
double y=(-1.0 + ( 2.0*(double)j/(double)Ny))*M_PI*Ly;
u[ind].x=0.5+exp(-1.0*(x*x+y*y)-1.0);//
u[ind].y=0.0;
v[ind].x=0.1+exp(-1.0*(x*x+y*y)-1.0);
v[ind].y=0.0;
}
|
(
) |
#if defined(cl_amd_fp64) || defined(cl_khr_fp64)
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#elif defined(cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
// function declarations/definitions using double precision doubleing-point arithmetic
#endif
__kernel void frequencies ( __global double* kx, const double Lx, const int Nx)
{
const int ind = get_global_id(0);
if ( ind < Nx/2) kx[ind] = -1.0*((double)((ind))/Lx)*((double)( ind)/Lx);
if ( ind ==Nx/2) kx[ ind]=0.0;
if ( ind > Nx/2) kx[ ind]=-1.0*(double)(Nx-ind)/Lx*(double)(Nx-ind)/Lx;
}
|
(
) |
#if defined(cl_amd_fp64) || defined(cl_khr_fp64)
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#elif defined(cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
// function declarations/definitions using double precision doubleing-point arithmetic
#endif
__kernel void linearpart ( __global double2* uhat, __global double2* vhat, __global const double* Kx, __global const double* Ky, const double Du, const double Dv, const double A, const double B, const double dt, const double c, const int Nx, const int Ny)
{
const int ind = get_global_id(0);
int i,j,k;
j=floor((double)(ind)/(double)Nx);
i=ind-j*Nx;
double uexp;
double vexp;
uexp=dt*c*(-1.0*A+Du*(Kx[i]+Ky[j]));
vexp=dt*c*(-1.0*B+Dv*(Kx[i]+Ky[j]));
uhat[ind].x=exp(uexp)*uhat[ind].x;
uhat[ind].y=exp(uexp)*uhat[ind].y;
vhat[ind].x=exp(vexp)*vhat[ind].x;
vhat[ind].y=exp(vexp)*vhat[ind].y;
}
|
(
) |
#if defined(cl_amd_fp64) || defined(cl_khr_fp64)
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#elif defined(cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
// function declarations/definitions using double precision doubleing-point arithmetic
#endif
__kernel void nonlinearpart_a ( __global double2* u,__global double2* v, const double A, const double dt, const double a){
const int ind = get_global_id(0);
//u[ind].x=A/(v[ind].x*v[ind].x)+(u[ind].x-A/(v[ind].x*v[ind].x))*exp(dt*a*(-1.0)*v[ind].x*v[ind].x);
u[ind].x=u[ind].x*exp(dt*a*(-1.0)*v[ind].x*v[ind].x);
u[ind].y=0.0;
}
|
(
) |
#if defined(cl_amd_fp64) || defined(cl_khr_fp64)
#if defined(cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#elif defined(cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif
// function declarations/definitions using double precision doubleing-point arithmetic
#endif
__kernel void nonlinearpart_b ( __global double2* u,__global double2* v, const double A, const double dt, const double b){
const int ind = get_global_id(0);
//v[ind].x=-v[ind].x/(u[ind].x*dt*b*v[ind].x-1.0);
v[ind].x=1.0/(-0.5*A*(dt*dt*b*b)-u[ind].x*(dt*b)+1/v[ind].x);
v[ind].y=0.0;
u[ind].x=A*dt*b+u[ind].x;
}
Here is your makefile! Change the clFFT to your path.
|
(
) |
####### Compiler, tools and options
CC = gcc
CFLAGS = -m64 -pipe -O3 -Wno-unused-but-set-parameter -Wall
DEL_FILE = rm -f
LIBS = -lOpenCL -I/home/quell/grayscott/clFFT/src/package/include/ -L/home/quell/grayscott/clFFT/src/package/lib64 -lclFFT -lm
#
####### Build rules
CL: main_gs.c
$(DEL_FILE) gs
$(DEL_FILE) *.o
$(CC) $(CFLAGS) -o gs main_gs.c $(LIBS)
export LD_LIBRARY_PATH=/home/quell/grayscott/clFFT/src/package/lib64:$$LD_LIBRARY_PATH
out: xdmfcreate.f90
gfortran -o out xdmfcreate.f90
clean:
$(DEL_FILE) gs
$(DEL_FILE) out
$(DEL_FILE) *.xmf
$(DEL_FILE) *.o
$(DEL_FILE) ./data/u*
$(DEL_FILE) ./data/v*
cleandata:
$(DEL_FILE) ./data/u*
$(DEL_FILE) ./data/v*
To run you need the INPUTFILE with the parameters.
|
(
) |
1024
1024
100000
100
4.0
4.0
0.01
0.04
0.005
0.038
0.076
Nx
Ny
Tmax
Plotgap
Lx
Ly
DT
Du
Dv
F
k
To view the data, compile and run xdmfcreate.f90. Open udata.xdmf and vdata.xdmf in ParaView.
|
(
) |
PROGRAM XdmfCreate
!--------------------------------------------------------------------------------
! .. Purpose ..
! XdmfCreate is a postprocessing program which creates header files for
! Paraview and Visit
! It uses the INPUTFILE and assumes that the filenames in the program
! are
! consistent with those in the current file.
!
! .. PARAMETERS .. INITIALIZED IN INPUTFILE
! Nx = power of two, number of modes in the x direction
! Ny = power of two, number of modes in the y direction
! Nt = the number of timesteps
! plotgap = the number of timesteps to take before plotting
! Lx = definition of the periodic domain of computation in x direction
! Ly = definition of the periodic domain of computation in y direction
! Dt = the time step
!
! REFERENCES
!
! www.xdmf.org
! Paraview users mailing list
! VisIt users mailing list
!
! ACCURACY
!
! ERROR INDICATORS AND WARNINGS
!
! FURTHER COMMENTS
!------------------------------------------------------------------------------------
! EXTERNAL ROUTINES REQUIRED
IMPLICIT NONE
! .. Scalar Arguments ..
INTEGER(KIND=4) :: Nx, Ny, Nt, plotgap
REAL(KIND=8) :: Lx, Ly, DT
! .. Local scalars ..
INTEGER(KIND=4) :: stat,plotnum,ind,n,numplots
REAL(KIND=8), PARAMETER :: pi=3.14159265358979323846264338327950288419716939937510d0
! .. Local Arrays ..
CHARACTER*50 :: InputFileName, OutputFileName, OutputFileName2
CHARACTER*10 :: number_file
InputFileName='INPUTFILE'
OPEN(unit=11,FILE=trim(InputFileName),status="OLD")
REWIND(11)
READ(11,*) Nx, Ny, Nt, plotgap, Lx, Ly, DT
CLOSE(11)
plotnum=0
numplots=1+Nt/plotgap
OutputFileName='udata.xmf'
OPEN(unit=11,FILE=trim(OutputFileName),status="UNKNOWN")
REWIND(11)
WRITE(11,'(a)') "<?xml version=""1.0"" ?>"
WRITE(11,'(a)') "<!DOCTYPE Xdmf SYSTEM ""Xdmf.dtd"" []>"
WRITE(11,'(a)') "<Xdmf xmlns:xi=""http://www.w3.org/2001/XInclude"" Version=""2.0"">"
WRITE(11,'(a)') "<Domain>"
WRITE(11,'(a)') " <Topology name=""topo"" TopologyType=""3DCoRectMesh"""
WRITE(11,*) " Dimensions=""",Nx,Ny,""">"
WRITE(11,'(a)') " </Topology>"
WRITE(11,'(a)') " <Geometry name=""geo"" Type=""ORIGIN_DXDYDZ"">"
WRITE(11,'(a)') " <!-- Origin -->"
WRITE(11,'(a)') " <DataItem Format=""XML"" Dimensions=""2"">"
WRITE(11,*) -pi*Lx, -pi*Ly
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " <!-- DxDyDz -->"
WRITE(11,'(a)') " <DataItem Format=""XML"" Dimensions=""2"">"
WRITE(11,*) REAL(2.0*pi*Lx/Nx,kind(0d0)), REAL(2.0*pi*Ly/Ny,kind(0d0))
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " </Geometry>"
WRITE(11,'(a)')
WRITE(11,'(a)') " <Grid Name=""TimeSeries"" GridType=""Collection"" CollectionType=""Temporal"">"
WRITE(11,'(a)') " <Time TimeType=""HyperSlab"">"
WRITE(11,'(a)') " <DataItem Format=""XML"" NumberType=""Float"" Dimensions=""2"">"
WRITE(11,*) " 0.0", dt," 2"
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " </Time>"
DO n=1,numplots
OutputFileName = 'data/u'
ind = index(OutputFileName,' ') - 1
WRITE(number_file,'(i0)') 10000000+plotnum
OutputFileName = OutputFileName(1:ind)//number_file
ind = index(OutputFileName,' ') - 1
OutputFileName = OutputFileName(1:ind)//'.datbin'
OutputFileName2 = "<Grid Name=""T"
WRITE(number_file,'(i0)') n
OutputFileName2 = OutputFileName2(1:13)//number_file
ind = index(number_file,' ') - 1
OutputFileName2 = OutputFileName2(1:13+ind)//'" GridType="Uniform">'
plotnum=plotnum+1
WRITE(11,'(a)')
WRITE(11,'(3X,a)') " ",OutputFileName2
WRITE(11,'(a)') " <Topology Reference=""/Xdmf/Domain/Topology[1]""/>"
WRITE(11,'(a)') " <Geometry Reference=""/Xdmf/Domain/Geometry[1]""/>"
WRITE(11,'(a)') " <Attribute Name=""Displacement"" Center=""Node"">"
WRITE(11,'(a)') " <DataItem Format=""Binary"" "
WRITE(11,'(a)') " DataType=""Float"" Precision=""8"" Endian=""Little"" "
WRITE(11,*) " Dimensions=""",Nx, Ny,""">"
WRITE(11,'(16X,a)') " ",OutputFileName
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " </Attribute>"
WRITE(11,'(3X,a)') "</Grid>"
END DO
WRITE(11,'(a)')" </Grid>"
WRITE(11,'(a)') "</Domain>"
WRITE(11,'(a)') "</Xdmf>"
CLOSE(11)
!same for v
plotnum=0
numplots=1+Nt/plotgap
OutputFileName='vdata.xmf'
OPEN(unit=11,FILE=trim(OutputFileName),status="UNKNOWN")
REWIND(11)
WRITE(11,'(a)') "<?xml version=""1.0"" ?>"
WRITE(11,'(a)') "<!DOCTYPE Xdmf SYSTEM ""Xdmf.dtd"" []>"
WRITE(11,'(a)') "<Xdmf xmlns:xi=""http://www.w3.org/2001/XInclude"" Version=""2.0"">"
WRITE(11,'(a)') "<Domain>"
WRITE(11,'(a)') " <Topology name=""topo"" TopologyType=""3DCoRectMesh"""
WRITE(11,*) " Dimensions=""",Nx,Ny,""">"
WRITE(11,'(a)') " </Topology>"
WRITE(11,'(a)') " <Geometry name=""geo"" Type=""ORIGIN_DXDYDZ"">"
WRITE(11,'(a)') " <!-- Origin -->"
WRITE(11,'(a)') " <DataItem Format=""XML"" Dimensions=""2"">"
WRITE(11,*) -pi*Lx, -pi*Ly
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " <!-- DxDyDz -->"
WRITE(11,'(a)') " <DataItem Format=""XML"" Dimensions=""2"">"
WRITE(11,*) REAL(2.0*pi*Lx/Nx,kind(0d0)), REAL(2.0*pi*Ly/Ny,kind(0d0))
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " </Geometry>"
WRITE(11,'(a)')
WRITE(11,'(a)') " <Grid Name=""TimeSeries"" GridType=""Collection"" CollectionType=""Temporal"">"
WRITE(11,'(a)') " <Time TimeType=""HyperSlab"">"
WRITE(11,'(a)') " <DataItem Format=""XML"" NumberType=""Float"" Dimensions=""2"">"
WRITE(11,*) " 0.0", dt," 2"
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " </Time>"
DO n=1,numplots
OutputFileName = 'data/v'
ind = index(OutputFileName,' ') - 1
WRITE(number_file,'(i0)') 10000000+plotnum
OutputFileName = OutputFileName(1:ind)//number_file
ind = index(OutputFileName,' ') - 1
OutputFileName = OutputFileName(1:ind)//'.datbin'
OutputFileName2 = "<Grid Name=""T"
WRITE(number_file,'(i0)') n
OutputFileName2 = OutputFileName2(1:13)//number_file
ind = index(number_file,' ') - 1
OutputFileName2 = OutputFileName2(1:13+ind)//'" GridType="Uniform">'
plotnum=plotnum+1
WRITE(11,'(a)')
WRITE(11,'(3X,a)') " ",OutputFileName2
WRITE(11,'(a)') " <Topology Reference=""/Xdmf/Domain/Topology[1]""/>"
WRITE(11,'(a)') " <Geometry Reference=""/Xdmf/Domain/Geometry[1]""/>"
WRITE(11,'(a)') " <Attribute Name=""Displacement"" Center=""Node"">"
WRITE(11,'(a)') " <DataItem Format=""Binary"" "
WRITE(11,'(a)') " DataType=""Float"" Precision=""8"" Endian=""Little"" "
WRITE(11,*) " Dimensions=""",Nx, Ny,""">"
WRITE(11,'(16X,a)') " ",OutputFileName
WRITE(11,'(a)') " </DataItem>"
WRITE(11,'(a)') " </Attribute>"
WRITE(11,'(3X,a)') "</Grid>"
END DO
WRITE(11,'(a)')" </Grid>"
WRITE(11,'(a)') "</Domain>"
WRITE(11,'(a)') "</Xdmf>"
CLOSE(11)
END PROGRAM XdmfCreate
- ↑ Information about the equations can be found at http://mrob.com/pub/comp/xmorphia/#formula.
- ↑ http://www.mathworks.com/matlabcentral/fileexchange/22940-vol3d-v2
- ↑ https://en.wikipedia.org/wiki/OpenCL
- ↑ http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
- ↑ https://github.com/clMathLibraries/clFFT