RHIT MA113/Printable version
This is the print version of RHIT MA113 You won't see this message or any elements not part of the book's content when you print or preview this page. |
The current, editable version of this book is available in Wikibooks, the open-content textbooks collection, at
https://en.wikibooks.org/wiki/RHIT_MA113
Vectors
Vectors
[edit | edit source]Scalars vs Vectors
[edit | edit source]Scalars are numbers, or quantities which represent numbers, such as
Vectors are composed of a direction and a magnitude, or multiple scalar components, such as The magnitude of a vector is found with the Pythagorean theorem,
Vector Multiplication
[edit | edit source]Vector-Scalar Multiplication
[edit | edit source]When a vector is multiplied by a scalar, each component of the vector is multiplied by the scalar, such as
Dot Product
[edit | edit source]The Dot Product (or Scalar Product) of two vectors is given by . The dot product is equal to the cosine of the angle between the vectors, multiplied by the product of their magnitudes, and therefore the angle between the vectors can easily be calculated using
Cross Product
[edit | edit source]The Cross Product of two vectors results in another vector, normal to both initial vectors. The magnitude of the cross product is equal to the area of the parallelogram formed by the two vectors, or
Vector Functions
Vector Functions
[edit | edit source]Position
[edit | edit source]Velocity
[edit | edit source]Velocity is equal to the derivative of position with respects to time,
Tangent and Normal Vectors
[edit | edit source]The Tangent Vector is the unit vector tangent to the motion, . The Normal vector, similarly, is the unit vector normal to the motion,
Acceleration
[edit | edit source]Acceleration is equal to the derivative of velocity with respects to time,
Tangential and Normal Acceleration Vectors
[edit | edit source]Curvature/Radius of Curvature
[edit | edit source]Osculating Circle
[edit | edit source]Partial Derivatives
Partial Derivatives
[edit | edit source]Critical Points
[edit | edit source]Gradients
[edit | edit source]Rate of Change
[edit | edit source]Optimization
[edit | edit source]Lagrange Multipliers
[edit | edit source]Multiple Integral
Multiple Integral
[edit | edit source]Evaluating Multiple Integrals
[edit | edit source]Multiple Integrals are evaluated from the inside out, beginning by evaluating the innermost integral, then working outwards.
The inner integrals may have limits containing variables, so long as those variables are integrated in an enclosing integral. Because of this, the limits of outermost integrals must contain only constants.
Changing the Order of Integration
[edit | edit source]So long as the order of integration is changed correctly, the multiple integral will cover the same region, and therefore order will not affect the end result of the multiple integral. In general, it is wise to begin by establishing the limits of the outermost integral first, then working inwards, to avoid any mistakes.
Converting Coordinate Systems
[edit | edit source]Cartesian to Cylindrical
[edit | edit source]Cartesian to Spherical
[edit | edit source]Cylindrical to Spherical
[edit | edit source]Uses
[edit | edit source]Average Value
[edit | edit source]The Average value of a function is equal to
Areas/Volumes
[edit | edit source]The equation for Area is and Volume is
In Cartesian coordinates, and , therefore Area and Volume are and
The same process can be used in Polar, Cylindrical, and Spherical coordinates, as follows:
In Polar,
In Cylindrical,
In Spherical,
Masses
[edit | edit source]The equation for the mass of an object is , where is the density of the object (which could be either a constant or function of position)
Moments
[edit | edit source]First Moments
[edit | edit source], where r is the distance from the axis or line of rotation
Second Moments
[edit | edit source], where r is the distance from the axis or line of rotation
Center of Masses
[edit | edit source]Equation Sheet
Equation Sheet
[edit | edit source]Name | Function |
---|---|
Vectors | |
Magnitude | |
Dot Product | |
Angle between 2 vectors | |
Cross Product | |
Vector Functions | |
Velocity | |
Tangent Vector | |
Normal Vector | |
Acceleration | |
Partial Derivatives | |
A | B |
Multiple Integrals | |
Average Value | |
Area | |
Volume | |
Mass | |
First Moment | |
Second Moment |