From Wikibooks, open books for an open world
- Theorem 1
For all integers,
,
![{\displaystyle \int _{[0,1]^{n}}{\frac {1}{1-\prod _{i=1}^{n}x_{i}}}\prod _{i=1}^{n}\mathrm {d} x_{i}=\zeta (n)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03f96bb99e1ad286146ebc78131de9c745dbbbb0)
- Proof
Using the power series of
,
![{\displaystyle \int _{[0,1]^{n}}{\frac {1}{1-\prod _{i=1}^{n}x_{i}}}\prod _{i=1}^{n}\mathrm {d} x_{i}=\int _{[0,1]^{n}}\sum _{j=0}^{\infty }\left(\prod _{i=1}^{n}x_{i}\right)^{j}\prod _{i=1}^{n}\mathrm {d} x_{i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79ad879c872d3dc8bb21e765f8ed0c5bf5faa8d1)
Evaluating,
![{\displaystyle =\int _{[0,1]^{n}}\sum _{j=0}^{\infty }\prod _{i=1}^{n}x_{i}^{j}\mathrm {d} x_{i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/93d60704735705d64944cd99407eef2dec52109f)

Evaluating the integral,

Evaluating the product,


Using the definition of the zeta function that holds only for
,
for all integers

- Note
It can be noted that,

fails to converge, as
.