SPM/BIDS
The SPM Wikibooks moved to https://www.fil.ion.ucl.ac.uk/spm/docs/ |
Brain Imaging Data Structure
[edit | edit source]The Brain Imaging Data Structure (BIDS) is a simple and intuitive way to organise and describe neuroimaging and behavioural data.
Standard specification
[edit | edit source]Validator
[edit | edit source]- BIDS Validator: online or from the command line
bids-validator
.
Discussion Forums
[edit | edit source]Tutorials
[edit | edit source]Publications
[edit | edit source]The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Gorgolewski K.J., Auer T., Calhoun V.D., Craddock R.C., Das S., Duff E.P., Flandin G., Ghosh S.S., Glatard T., Halchenko Y.O., Handwerker D.A., Hanke M., Keator D., Li X., Michael Z., Maumet C., Nichols B.N., Nichols T.E., Pellman J., Poline J.-B., Rokem A., Schaefer G., Sochat V., Triplett W., Turner J.A., Varoquaux G. & Poldrack R.A. Scientific Data 3, 160044 (2016).
BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. Gorgolewski K.J., Alfaro-Almagro F., Auer T., Bellec P., Capota M., Chakravarty M.M., Churchill N.W., Cohen A.L., Craddock R.C., Devenyi G.A., Eklund A., Esteban O., Flandin G., Ghosh S.S., Guntupalli J.S., Jenkinson M., Keshavan A., Kiar G., Liem F., Raamana P.R., Raffelt D., Steele C.J., Quirion P.-O., Smith R.E., Strother S.C., Varoquaux G., Wang Y., Yarkoni T. & Poldrack R.A. PLoS Computational Biology 13(3):e1005209 (2017).
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Niso G., Gorgolewski K.J., Bock E., Brooks T.L., Flandin G., Gramfort A., Henson R.N., Jas M., Litvak V., Moreau J.T., Oostenveld R., Schoffelen J.-M., Tadel F., Wexler J. & Baillet S. Scientific Data 5, 180110 (2018).
EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Pernet C.R., Appelhoff S., Gorgolewski K.J., Flandin G., Phillips C., Delorme A. & Oostenveld R. Scientific Data 6, 103 (2019) .
BIDS Tools in SPM/MATLAB
[edit | edit source]SPM provides a number of functionalities (MATLAB/Octave functions) to facilitate the creation or use of datasets formatted according to BIDS.
JSON files
[edit | edit source]A JSON file can be read/written using spm_jsonread
and spm_jsonwrite
.
>> type sub-01_task-rest_bold.json
{
"RepetitionTime": 3.0,
"Instruction": "Lie still and keep your eyes open"
}
>> bold = spm_jsonread('sub-01_task-rest_bold.json')
bold =
RepetitionTime: 3
Instruction: 'Lie still and keep your eyes open'
>> descr = struct('Name','My Dataset','BIDSVersion','1.0.2')
descr =
Name: 'My Dataset'
BIDSVersion: '1.0.2'
>> spm_jsonwrite('dataset_description.json',descr, struct('indent',' '));
>> type dataset_description.json
{
"Name": "My Dataset",
"BIDSVersion": "1.0.2"
}
These functions are also independently available in JSONio, a JSON library for MATLAB and Octave. They are compatible with MATLAB's jsonencode and jsondecode.
TSV files
[edit | edit source]A tab-separated values (TSV) file can be read/written using spm_load
and spm_save
.
>> type task-Checkerboard_acq-TR645_events.tsv
onset duration trial_type
0 20 Fixation
20 20 Checkerboard
40 20 Fixation
60 20 Checkerboard
80 20 Fixation
100 20 Checkerboard
>> events = spm_load('task-Checkerboard_acq-TR645_events.tsv')
events =
onset: [6x1 double]
duration: [6x1 double]
trial_type: {6x1 cell}
>> p = struct('participant_id',{{'sub-01','sub-02'}}, 'sex',{{'M','F'}}, 'age',[28 21])
p =
participant_id: {'sub-01' 'sub-02'}
sex: {'M' 'F'}
age: [28 21]
>> spm_save('participants.tsv',p)
>> type participants.tsv
participant_id sex age
sub-01 M 28
sub-02 F 21
These functions are compatible with MATLAB table array and handle gzip compression transparently.
>> participant_id = {'sub-01'; 'sub-02'};
>> sex = {'M'; 'F'};
>> age = [28 21]';
>> p = table(participant_id,sex,age);
>> spm_save('participants.tsv.gz',p)
>> spm_load('participants.tsv.gz')
ans =
participant_id: {2x1 cell}
sex: {2x1 cell}
age: [2x1 double]
NIfTI files
[edit | edit source]NIfTI files can be read/written using spm_vol
or @nifti
.
>> S = nifti('sub-2475376__T1w.nii')
S =
NIFTI object: 1-by-1
dat: [256x256x192 file_array]
mat: [4x4 double]
mat_intent: 'Scanner'
mat0: [4x4 double]
mat0_intent: 'Scanner'
descrip: 'MR'
>> F = nifti('sub-2475376_task-Checkerboard_bold.nii')
F =
NIFTI object: 1-by-1
dat: [4-D file_array]
mat: [4x4 double]
mat_intent: 'Scanner'
mat0: [4x4 double]
mat0_intent: 'Scanner'
timing: [1x1 struct]
descrip: '4D image'
>> F.timing.tspace
ans =
1.4000
By default, SPM does not support compressed NIfTI files (.nii.gz
) but MATLAB/Octave provide gzip/gunzip functions if needed and they are also available through the batch interface from BasicIO > File Operations > Gunzip Files
.
BIDS parser and queries
[edit | edit source]A data directory organised according to BIDS can be parsed with spm_BIDS
.
Here is an example using the ds007 dataset:
>> % Parse BIDS directory
>> BIDS = spm_BIDS('/data/BIDS-examples/ds007');
>> % Make general queries about the dataset
>> spm_BIDS(BIDS,'subjects')
ans =
'01' '02' '03' '04' '05' '06' '07' '08' '09' '10' '11' '12' '13' '14' '15' '16' '17' '18' '19' '20'
>> spm_BIDS(BIDS,'sessions')
ans =
Empty cell array: 1-by-0
>> spm_BIDS(BIDS,'runs')
ans =
'01' '02'
>> spm_BIDS(BIDS,'tasks')
ans =
'stopsignalwithletternaming' 'stopsignalwithmanualresponse' 'stopsignalwithpseudowordnaming'
>> spm_BIDS(BIDS,'types')
ans =
'T1w' 'bold' 'events' 'inplaneT2'
>> spm_BIDS(BIDS,'modalities')
ans =
'anat' 'func'
>> % Make more specific queries
>> spm_BIDS(BIDS,'runs','type','T1w')
ans =
Empty cell array: 1-by-0
>> spm_BIDS(BIDS,'runs','type','bold')
ans =
'01' '02'
>> % Get the NIfTI file for subject '05', run '02' and task 'stopsignalwithmanualresponse':
>> spm_BIDS(BIDS,'data','sub','05','run','02','task','stopsignalwithmanualresponse','type','bold')
ans =
'/data/ds007/sub-05/func/sub-05_task-stopsignalwithmanualresponse_run-02_bold.nii.gz'
>> % and corresponding metadata, including TR:
>> spm_BIDS(BIDS,'metadata','sub','05','run','02','task','stopsignalwithmanualresponse','type','bold')
ans =
RepetitionTime: 2
TaskName: 'stop signal with manual response'
>> % Get the T1-weighted images from all subjects:
>> spm_BIDS(BIDS,'data','type','T1w')
ans =
'/data/ds007/sub-01/anat/sub-01_T1w.nii.gz'
'/data/ds007/sub-02/anat/sub-02_T1w.nii.gz'
'/data/ds007/sub-03/anat/sub-03_T1w.nii.gz'
'/data/ds007/sub-04/anat/sub-04_T1w.nii.gz'
'/data/ds007/sub-05/anat/sub-05_T1w.nii.gz'
'/data/ds007/sub-06/anat/sub-06_T1w.nii.gz'
'/data/ds007/sub-07/anat/sub-07_T1w.nii.gz'
'/data/ds007/sub-08/anat/sub-08_T1w.nii.gz'
'/data/ds007/sub-09/anat/sub-09_T1w.nii.gz'
'/data/ds007/sub-10/anat/sub-10_T1w.nii.gz'
'/data/ds007/sub-11/anat/sub-11_T1w.nii.gz'
'/data/ds007/sub-12/anat/sub-12_T1w.nii.gz'
'/data/ds007/sub-13/anat/sub-13_T1w.nii.gz'
'/data/ds007/sub-14/anat/sub-14_T1w.nii.gz'
'/data/ds007/sub-15/anat/sub-15_T1w.nii.gz'
'/data/ds007/sub-16/anat/sub-16_T1w.nii.gz'
'/data/ds007/sub-17/anat/sub-17_T1w.nii.gz'
'/data/ds007/sub-18/anat/sub-18_T1w.nii.gz'
'/data/ds007/sub-19/anat/sub-19_T1w.nii.gz'
'/data/ds007/sub-20/anat/sub-20_T1w.nii.gz'
Formatting datasets into BIDS
[edit | edit source]Helper functions spm_mkdir
and spm_copy
might come handy, as well as previously mentionned spm_save
and spm_jsonwrite
.
For example, the following piece of code using spm_mkdir
:
>> spm_mkdir('/data/bids',{'sub-2475376','sub-5489652'},{'ses-1','ses-2'},'func');
>> spm_mkdir('/data/bids',{'sub-2475376','sub-5489652'},'ses-1','anat');
creates this directory hierarchy:
/data
└── bids
├── sub-2475376
│ ├── ses-1
│ │ ├── anat
│ │ └── func
│ └── ses-2
│ └── func
└── sub-5489652
├── ses-1
│ ├── anat
│ └── func
└── ses-2
└── func
while spm_copy
makes it easier to copy files and their attached metadata (e.g. sidecar JSON files) with compression on the fly.
>> ls
sub-2475376_task-rest_bold.json
sub-2475376_task-rest_bold.nii.gz
>> spm_copy('sub-2475376_task-rest_bold.nii.gz','/derivatives', 'nifti',true, 'gunzip',true)
>> ls /derivatives
sub-2475376_task-rest_bold.json
sub-2475376_task-rest_bold.nii
See also these options in the batch interface:
- The
DICOM Import
batch module has an option to create metadata sidecar JSON files:
matlabbatch{1}.spm.util.import.dicom.convopts.meta = true;
- The
3D to 4D File Conversion
batch module has an option to store the TR in the NIfTI header:
matlabbatch{1}.spm.util.cat.RT = TR;