When forces are in equilibrium, that is, there is no net force and the summation of the particle's moment, taken at any point, is equal to 0.
∑ F x = 0 {\displaystyle \sum F_{x}=0}
∑ F y = 0 {\displaystyle \sum F_{y}=0}
∑ F z = 0 {\displaystyle \sum F_{z}=0}
∑ M o = 0 {\displaystyle \sum M_{o}=0}
F = m a {\displaystyle F=ma}
a s i n A = b s i n B = c s i n C {\displaystyle {a \over sinA}={b \over sinB}={c \over sinC}}
a 2 = b 2 + c 2 − 2 b c cos A {\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos A\ }
b 2 = a 2 + c 2 − 2 a c cos B {\displaystyle b^{2}=a^{2}+c^{2}-2ac\cos B\ }
c 2 = a 2 + b 2 − 2 a b cos C {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos C\ }
a → ∙ b → = a b cos θ {\displaystyle {\vec {a}}\bullet {\vec {b}}=ab\cos \theta }