Statistical Thermodynamics and Rate Theories/Data
Appearance
Molecule | (K) | (K) |
---|---|---|
H2[1] | 87.547 | 6332.52 |
N2Invalid parameter in <ref> tag |
2.0518 | 3393.54 |
O2Invalid parameter in <ref> tag |
2.0793 | 2273.60 |
F2Invalid parameter in <ref> tag |
1.2808 | 1318.87 |
HFInvalid parameter in <ref> tag |
41.345 | 5954.27 |
HClInvalid parameter in <ref> tag |
15.240 | 4303.41 |
NOInvalid parameter in <ref> tag |
2.4524 | 2739.79 |
C2H2[2] | 1.7012 |
Example
[edit | edit source]Calculate the ground state characteristic rotational () and characteristic vibrational () temperatures for molecular hydrogen, H2.
Where is the reduced Planck constant, is the internuclear distance for ground state hydrogen[1], is the Boltzmann constant, and is the reduced mass.
The characteristic vibrational temperature () is calculated using the following equation
Where is Planck's constant, is the Boltzmann constant, and is the vibrational frequency of the molecule. To retain units of K the vibrational frequency must be changed to units of s-1.
References
[edit | edit source]- ↑ a b http://webbook.nist.gov/cgi/cbook.cgi?ID=1333-74-0
- ↑ E. Plyler, E. Tidwell, and T. Wiggins, (1963). Rotation-Vibration Constants of Acetylene. Journal of Optical Society America. Table 4, Data section in appendix