Statistics/Distributions/Bernoulli
A Wikibookian suggests that R_Programming/Probability_Functions/Bernoulli be merged into this chapter. Discuss whether or not this merger should happen on the discussion page. |
Bernoulli Distribution: The coin toss
[edit | edit source]Parameters | |
---|---|
Support | |
PMF | |
CDF | |
Mean | |
Median | |
Mode | |
Variance | |
Skewness | |
Ex. kurtosis | |
Entropy | |
MGF | |
CF | |
PGF | |
Fisher information |
There is no more basic random event than the flipping of a coin. Heads or tails. It's as simple as you can get! The "Bernoulli Trial" refers to a single event which can have one of two possible outcomes with a fixed probability of each occurring. You can describe these events as "yes or no" questions. For example:
- Will the coin land heads?
- Will the newborn child be a girl?
- Are a random person's eyes green?
- Will a mosquito die after the area was sprayed with insecticide?
- Will a potential customer decide to buy my product?
- Will a citizen vote for a specific candidate?
- Is an employee going to vote pro-union?
- Will this person be abducted by aliens in their lifetime?
The Bernoulli Distribution has one controlling parameter: the probability of success. A "fair coin" or an experiment where success and failure are equally likely will have a probability of 0.5 (50%). Typically the variable p is used to represent this parameter.
If a random variable X is distributed with a Bernoulli Distribution with a parameter p we write its probability mass function as:
Where the event X=1 represents the "yes."
This distribution may seem trivial, but it is still a very important building block in probability. The Binomial distribution extends the Bernoulli distribution to encompass multiple "yes" or "no" cases with a fixed probability. Take a close look at the examples cited above. Some similar questions will be presented in the next section which might give an understanding of how these distributions are related.
Mean
[edit | edit source]The mean (E[X]) can be derived: