Δ
L
M
N
{\displaystyle \Delta LMN}
is an equilateral triangle
The Napoleon's theorem states that if equilateral triangles are constructed on the sides of a triangle, either all outward or all inward, the lines connecting the centers of those equilateral triangles themselves form an equilateral triangle. That means, for a triangle
Δ
A
B
C
{\displaystyle \Delta ABC}
, if three equilateral triangles are constructed on the sides of the triangle, such as
Δ
A
C
M
{\displaystyle \Delta ACM}
,
Δ
B
C
X
{\displaystyle \Delta BCX}
and
Δ
A
B
Z
{\displaystyle \Delta ABZ}
either all outward or all inward, the three lines connecting the centers of the three triangles,
M
L
{\displaystyle ML}
,
L
N
{\displaystyle LN}
and
M
N
{\displaystyle MN}
construct an equilateral triangle
L
M
N
{\displaystyle LMN}
.
A trigonomatric proof of the Napoleon's theorem.
Let,
Δ
A
B
C
{\displaystyle \Delta ABC}
a triangle. Here, three equilateral triangles are constructed,
Δ
B
C
E
{\displaystyle \Delta BCE}
,
Δ
A
B
D
{\displaystyle \Delta ABD}
and
Δ
A
C
F
{\displaystyle \Delta ACF}
and the centroids of the triangles are
P
{\displaystyle P}
,
Q
{\displaystyle Q}
and
R
{\displaystyle R}
respectively. Here,
A
C
=
b
{\displaystyle AC=b}
,
A
B
=
c
{\displaystyle AB=c}
,
B
C
=
a
{\displaystyle BC=a}
,
P
Q
=
r
{\displaystyle PQ=r}
,
P
R
=
q
{\displaystyle PR=q}
and
Q
R
=
p
{\displaystyle QR=p}
. Therefore, the area of the triangle
Δ
A
B
C
{\displaystyle \Delta ABC}
,
T
=
1
2
b
c
⋅
sin
A
{\displaystyle T={\frac {1}{2}}bc\cdot \sin A}
⇒
b
c
⋅
sin
A
=
2
T
{\displaystyle \Rightarrow bc\cdot \sin A=2T}
For our proof, we will be working with one equilateral triangle, as three of the triangles are similar (equilateral). A median of
Δ
A
C
F
{\displaystyle \Delta ACF}
is
A
G
=
(
m
+
k
)
{\displaystyle AG=(m+k)}
, where
A
R
=
m
{\displaystyle AR=m}
and
R
G
=
k
{\displaystyle RG=k}
.
A
Q
=
n
{\displaystyle AQ=n}
and, as
Δ
A
C
F
{\displaystyle \Delta ACF}
is a equilateral triangle,
∠
A
G
C
=
90
∘
{\displaystyle \angle AGC=90^{\circ }}
.
Here,
m
+
k
=
b
3
2
{\displaystyle m+k={\frac {b{\sqrt {3}}}{2}}}
. As the centroid of a triangle divides a median of the triangle as
1
:
2
{\displaystyle 1:2}
ratio, then
m
=
2
3
⋅
b
3
2
{\displaystyle m={\frac {2}{3}}\cdot {\frac {b{\sqrt {3}}}{2}}}
=
b
3
{\displaystyle ={\frac {b}{\sqrt {3}}}}
. Similarly,
n
=
c
3
{\displaystyle n={\frac {c}{\sqrt {3}}}}
.
According to the Law of Cosines,
a
2
=
b
2
+
c
2
−
2
b
c
⋅
cos
A
{\displaystyle a^{2}=b^{2}+c^{2}-2bc\cdot \cos A}
(for
Δ
A
B
C
{\displaystyle \Delta ABC}
) and for
Δ
A
Q
R
{\displaystyle \Delta AQR}
,
p
2
=
m
2
+
n
2
−
2
m
n
⋅
cos
(
A
+
60
∘
)
{\displaystyle p^{2}=m^{2}+n^{2}-2mn\cdot \cos(A+60^{\circ })}
=
(
b
3
)
2
+
(
c
3
)
2
−
2
b
3
⋅
c
3
⋅
cos
(
A
+
60
∘
)
{\displaystyle =({\frac {b}{\sqrt {3}}})^{2}+({\frac {c}{\sqrt {3}}})^{2}-2{\frac {b}{\sqrt {3}}}\cdot {\frac {c}{\sqrt {3}}}\cdot \cos(A+60^{\circ })}
=
b
2
+
c
2
−
2
b
c
⋅
cos
(
A
+
60
∘
)
3
{\displaystyle ={\frac {b^{2}+c^{2}-2bc\cdot \cos(A+60^{\circ })}{3}}}
=
b
2
+
c
2
−
2
b
c
(
cos
A
⋅
c
o
s
60
∘
−
sin
A
⋅
sin
60
∘
)
3
{\displaystyle ={\frac {b^{2}+c^{2}-2bc(\cos A\cdot cos60^{\circ }-\sin A\cdot \sin 60^{\circ })}{3}}}
=
b
2
+
c
2
−
2
b
c
(
cos
A
⋅
1
2
−
sin
A
⋅
3
2
)
3
{\displaystyle ={\frac {b^{2}+c^{2}-2bc(\cos A\cdot {\frac {1}{2}}-\sin A\cdot {\frac {\sqrt {3}}{2}})}{3}}}
=
b
2
+
c
2
−
b
c
(
cos
A
⋅
−
sin
A
⋅
3
)
3
{\displaystyle ={\frac {b^{2}+c^{2}-bc(\cos A\cdot -\sin A\cdot {\sqrt {3}})}{3}}}
=
b
2
+
c
2
−
b
c
cos
A
⋅
−
2
T
3
)
3
{\displaystyle ={\frac {b^{2}+c^{2}-bc\cos A\cdot -2T{\sqrt {3}})}{3}}}
=
a
2
+
2
b
c
cos
A
−
b
c
cos
A
−
2
T
3
)
3
{\displaystyle ={\frac {a^{2}+2bc\cos A-bc\cos A-2T{\sqrt {3}})}{3}}}
[According to the law of cosines for
Δ
A
B
C
{\displaystyle \Delta ABC}
]
=
a
2
+
b
c
cos
A
−
2
T
3
)
3
{\displaystyle ={\frac {a^{2}+bc\cos A-2T{\sqrt {3}})}{3}}}
=
a
2
+
b
2
+
c
2
−
a
2
2
−
2
T
3
)
3
{\displaystyle ={\frac {a^{2}+{\frac {b^{2}+c^{2}-a^{2}}{2}}-2T{\sqrt {3}})}{3}}}
=
b
2
+
c
2
+
a
2
−
4
T
3
2
3
{\displaystyle ={\frac {\frac {b^{2}+c^{2}+a^{2}-4T{\sqrt {3}}}{2}}{3}}}
Therefore,
p
=
1
6
(
a
2
+
b
2
+
c
2
−
4
T
3
)
{\displaystyle p={\sqrt {{\frac {1}{6}}(a^{2}+b^{2}+c^{2}-4T{\sqrt {3}})}}}
In the same way, we can prove,
q
=
1
6
(
a
2
+
b
2
+
c
2
−
4
T
3
)
{\displaystyle q={\sqrt {{\frac {1}{6}}(a^{2}+b^{2}+c^{2}-4T{\sqrt {3}})}}}
and
r
=
1
6
(
a
2
+
b
2
+
c
2
−
4
T
3
)
{\displaystyle r={\sqrt {{\frac {1}{6}}(a^{2}+b^{2}+c^{2}-4T{\sqrt {3}})}}}
. Thus,
p
=
q
=
r
{\displaystyle p=q=r}
.
∴
Δ
P
Q
R
{\displaystyle \therefore \Delta PQR}
is an equilateral triangle. [Proved]