Definition (Banach space):
A Banach space is a complete normed space.
TODO: Links
Proof: Suppose first that
is a Banach space. Then suppose that
converges, where
is a sequence in
. Then set
; we claim that
is a Cauchy sequence. Indeed, for
sufficiently large, we have
.
Hence,
also converges, because
is a Banach space.
Now suppose that for all sequences
the implication

holds. Let then
be a Cauchy sequence in
. By the Cauchy property, choose, for all
, a number
such that
whenever
. We may assume that
, ie.
is an ascending sequence of natural numbers. Then define
and for
set
. Then
.
Moreover,
,
so that

converges as a monotonely increasing, bounded sequence. By the assumption, the sequence
converges, where
.
Thus,
is a Cauchy sequence that has a convergent subsequence and is hence convergent.