From Wikibooks, open books for an open world
The basic idea behind independence is that if your random variables (or vectors) are independent then the combination of several of these random variable/vectors
(
P
(
X
1
≤
x
1
,
.
.
.
,
X
d
≤
x
d
)
)
{\displaystyle \left(P\left(X_{1}\leq x_{1},...,X_{d}\leq x_{d}\right)\right)}
can be multiplied together.
Given
T
1
,
T
2
{\displaystyle T_{1},T_{2}\,}
are independent
λ
-Exponential
{\displaystyle \lambda \,{\mbox{-Exponential}}}
random variables, then
E
[
T
1
+
T
2
]
=
E
[
2
T
1
]
=
E
[
2
T
2
]
{\displaystyle E\left[T_{1}+T_{2}\right]=E\left[2T_{1}\right]=E\left[2T_{2}\right]}
. But
Var
(
T
1
+
T
2
)
<
Var
(
2
T
1
)
{\displaystyle {\mbox{Var}}\left(T_{1}+T_{2}\right)<{\mbox{Var}}\left(2T_{1}\right)}
. This is because
Var
(
T
1
+
T
2
)
=
Var
(
T
1
)
+
Var
(
T
2
)
=
2
Var
(
T
1
)
{\displaystyle {\mbox{Var}}\left(T_{1}+T_{2}\right)={\mbox{Var}}\left(T_{1}\right)+{\mbox{Var}}\left(T_{2}\right)=2{\mbox{Var}}\left(T_{1}\right)}
by independence, whereas
Var
(
2
T
1
)
=
2
2
⋅
Var
(
T
1
)
{\displaystyle {\mbox{Var}}\left(2T_{1}\right)=2^{2}\cdot {\mbox{Var}}\left(T_{1}\right)}
.
See the equations section for some more examples.
P
(
X
1
≤
x
1
,
.
.
.
,
X
d
≤
x
d
)
{\displaystyle P\left(X_{1}\leq x_{1},...,X_{d}\leq x_{d}\right)\,}
=
P
(
X
1
≤
x
1
)
⋯
P
(
X
d
≤
x
d
)
{\displaystyle =P\left(X_{1}\leq x_{1}\right)\cdots P\left(X_{d}\leq x_{d}\right)\,}
F
X
1
,
X
2
,
.
.
.
X
d
(
x
1...
d
)
{\displaystyle F_{X_{1},X_{2},...X_{d}}(x_{1...d})\,}
=
F
X
1
(
x
1
)
⋯
F
X
d
(
x
d
)
{\displaystyle =F_{X_{1}}(x_{1})\cdots F_{X_{d}}(x_{d})\,}
f
X
1
,
X
2
,
.
.
.
X
d
(
x
1...
d
)
{\displaystyle f_{X_{1},X_{2},...X_{d}}(x_{1...d})\,}
=
f
X
1
(
x
1
)
⋯
f
X
d
(
x
d
)
{\displaystyle =f_{X_{1}}(x_{1})\cdots f_{X_{d}}(x_{d})\,}
E
[
X
1
⋅
X
2
⋯
X
d
]
{\displaystyle E\left[X_{1}\cdot X_{2}\cdots X_{d}\right]\,}
=
E
[
X
1
]
⋯
E
[
X
d
]
{\displaystyle =E\left[X_{1}\right]\cdots E\left[X_{d}\right]\,}
E
[
g
1
(
X
1
)
⋅
g
2
(
X
2
)
⋯
g
d
(
X
d
)
]
{\displaystyle E\left[g_{1}\left(X_{1}\right)\cdot g_{2}\left(X_{2}\right)\cdots g_{d}\left(X_{d}\right)\right]\,}
=
E
[
g
1
(
X
1
)
]
⋯
E
[
g
d
(
X
d
)
]
{\displaystyle =E\left[g_{1}\left(X_{1}\right)\right]\cdots E\left[g_{d}\left(X_{d}\right)\right]\,}
M
X
1
+
.
.
.
+
X
d
(
x
)
{\displaystyle M_{X_{1}+...+X_{d}}(x)\,}
=
M
X
1
(
x
)
⋯
M
X
1
(
x
)
{\displaystyle =M_{X_{1}}(x)\cdots M_{X_{1}}(x)\,}
F
X
Y
(
x
,
y
)
{\displaystyle F_{XY}(x,y)\,}
=
?
?
?
{\displaystyle =???\,}
f
X
Y
(
x
,
y
)
{\displaystyle f_{XY}(x,y)\,}
=
?
?
?
{\displaystyle =???\,}
F
X
|
Y
(
x
|
y
)
{\displaystyle F_{X|Y}(x|y)\,}
=
?
?
?
{\displaystyle =???\,}
F
X
+
Y
(
x
)
{\displaystyle F_{X+Y}(x)\,}
=
P
(
X
+
Y
≤
x
)
{\displaystyle =P\left(X+Y\leq x\right)\,}