User:LABoyd2/polygon 150925
polygon
[edit | edit source]Creates a multiple sided shape from a list of x,y coordinates. A polygon is the most powerful 2D object. It can create anything that circle and squares can, as well as much more. This includes irregular shapes with both concave and convex edges. In addition it can place holes within that shape.
polygon(points = [ [x, y], ... ], paths = [ [p1, p2, p3..], ...], convexity = N);
Parameters
- points
- The list of x,y points of the polygon. : A vector of 2 element vectors.
- Note: points are indexed from 0 to n-1.
- paths
- default
- If no path is specified, all points are used in the order listed.
- single vector
- The order to traverse the points. Uses indices from 0 to n-1. May be in a different order and use all or part, of the points listed.
- multiple vectors
- Creates primary and secondary shapes. Secondary shapes are subtracted from the primary shape (like difference). Secondary shapes may be wholly or partially within the primary shape.
- default
- A closed shape is created by returning from the last point specified to the first.
- convexity
- Integer number of "inward" curves, ie. expected path crossings of an arbitrary line through the polygon. See below.
defaults: polygon(); yields: polygon(points = undef, paths = undef, convexity = 1);
Example no holes
equivalent scripts for this example polygon(points=[[0,0],[100,0],[130,50],[30,50]]); polygon([[0,0],[100,0],[130,50],[30,50]], paths=[[0,1,2,3]]); polygon([[0,0],[100,0],[130,50],[30,50]],[[3,2,1,0]]); polygon([[0,0],[100,0],[130,50],[30,50]],[[1,0,3,2]]); a=[[0,0],[100,0],[130,50],[30,50]]; b=[[3,0,1,2]]; polygon(a); polygon(a,b); polygon(a,[[2,3,0,1,2]]);
Example one hole
equivalent scripts for this example polygon(points=[[0,0],[100,0],[0,100],[10,10],[80,10],[10,80]], paths=[[0,1,2],[3,4,5]],convexity=10); triangle_points =[[0,0],[100,0],[0,100],[10,10],[80,10],[10,80]]; triangle_paths =[[0,1,2],[3,4,5]]; polygon(triangle_points,triangle_paths,10);
The 1st path vector, [0,1,2], selects the points, [0,0],[100,0],[0,100], for the primary shape. The 2nd path vector, [3,4,5], selects the points, [10,10],[80,10],[10,80], for the secondary shape. The secondary shape is subtracted from the primary ( think difference() ). Since the secondary is wholly within the primary, it leaves a shape with a hole.
Example multi hole
NOTE: concat() requires 2015.03 or later
//example polygon with multiple holes a0 = [[0,0],[100,0],[130,50],[30,50]]; // main b0 = [1,0,3,2]; a1 = [[20,20],[40,20],[30,30]]; // hole 1 b1 = [4,5,6]; a2 = [[50,20],[60,20],[40,30]]; // hole 2 b2 = [7,8,9]; a3 = [[65,10],[80,10],[80,40],[65,40]]; // hole 3 b3 = [10,11,12,13]; a4 = [[98,10],[115,40],[85,40],[85,10]]; // hole 4 b4 = [14,15,16,17]; a = concat (a0,a1,a2,a3,a4); b = [b0,b1,b2,b3,b4]; polygon(a,b); //alternate polygon(a,[b0,b1,b2,b3,b4]);
convexity
The convexity parameter specifies the maximum number of front sides (back sides) a ray intersecting the object might penetrate. This parameter is only needed for correctly displaying the object in OpenCSG preview mode and has no effect on the polyhedron rendering.
This image shows a 2D shape with a convexity of 4, as the ray indicated in red crosses the 2D shape a maximum of 4 times. The convexity of a 3D shape would be determined in a similar way. Setting it to 10 should work fine for most cases.