Jump to content

Chess Opening Theory/1. e4/1...e5/2. Nf3/2...Nc6/3. Nc3/3...Nf6/4. Nxe5

From Wikibooks, open books for an open world
Halloween Gambit
a b c d e f g h
8a8 black rookb8 black kingc8 black bishopd8 black queene8 black kingf8 black bishopg8 black kingh8 black rook8
7a7 black pawnb7 black pawnc7 black pawnd7 black pawne7 black kingf7 black pawng7 black pawnh7 black pawn7
6a6 black kingb6 black kingc6 black knightd6 black kinge6 black kingf6 black knightg6 black kingh6 black king6
5a5 black kingb5 black kingc5 black kingd5 black kinge5 white knightf5 black kingg5 black kingh5 black king5
4a4 black kingb4 black kingc4 black kingd4 black kinge4 white pawnf4 black kingg4 black kingh4 black king4
3a3 black kingb3 black kingc3 white knightd3 black kinge3 black kingf3 black kingg3 black kingh3 black king3
2a2 white pawnb2 white pawnc2 white pawnd2 white pawne2 black kingf2 white pawng2 white pawnh2 white pawn2
1a1 white rookb1 black kingc1 white bishopd1 white queene1 white kingf1 white bishopg1 black kingh1 white rook1
a b c d e f g h
Position in Forsyth-Edwards Notation (FEN)
Moves: 1. e4 e5 2. Nf3 Nc6 3. Nc3 Nf6 4. Nxe5

Halloween Gambit

[edit | edit source]

The Halloween or Müller-Schulze Gambit is an aggressive and complex gambit. White sacrifices a piece with the idea of central pawn storm, with the possibility of gaining time by driving back the black knights.

Theory table

[edit | edit source]

For explanation of theory tables, see theory table and for notation, see algebraic notation.
1. e4 e5 2. Nf3 Nc6 3. Nc3 Nf6 4. Nxe5

4 5 6 7 8 9 10 11
Nxe5
Nxe5
d4
Nc6
d5
Bb4
dxc6
Nxe4
Qd4
Qe7
Be3
Nxc3
Qxg7
Nd5+
c3
bxc3
=/=+
...
..
...
Ng6
e5
Ng8
Bc4
d5
Bxd5
c6
Bb3
Bb4
O-O
Bxc3
bxc3
N8e7
=+
...
Nxe4?!
Qh5
Qf6
Qxf7+
Qxf7
Nxf7
Kxf7
Bc4+
Ke7
Nxe4
Nd4
Bd3
+=
...
...
...
...
...
...
...
Nxf2
Nxh8
Nxh1
Nb5
Nb4
Nxc7+
Kd8
Nxa8
Nxc2+
+=

When contributing to this Wikibook, please follow the Conventions for organization.

References

[edit | edit source]
  • Larry Kaufman, The Chess Advantage in Black and White (p. 328)