Electronics/Charge and Coulomb's Law
Electronics | Foreword | Basic Electronics | Complex Electronics | Electricity | Machines | History of Electronics | Appendix | edit
Two atoms are walking down the street. The first atom says to the second atom "I think I lost an electron!" The second says "Are you sure?" To which the first states "I'm positive!"
Basic Understanding
[edit | edit source]- Conductors
- Materials which contain movable charges that can flow with minimal resistance.
- Insulators
- Materials with few or no movable charges, or with charges which flow with extremely high resistance.
- Semiconductors
- Materials whose behavior ranges between that of a conductor and that of an insulator under different conditions. Their conducting behavior may be heavily dependent on temperature. They are useful because we are able to change their conducting behavior to be dependent on many other factors.
- The Atom
- An atom contains a positively charged nucleus and one or more negatively charged electrons. The atom exists in three states: neutral, positively charged, and negatively charged. A neutral atom has the same number of electrons and protons, a positively charged atom has more protons than electrons and a negatively charged atom has more electrons than protons.
- (+) and (-) Ions
- An ion is an atom that has an unequal number of electrons and protons. Ions are formed when a neutral atom gains or loses electrons during a chemical reaction. In a battery, the positive side has + ions, means there are fewer electrons than protons, giving it an overall positive charge, and -ve side, more electrons than protons, giving it an overall negative charge. +ve and -ve charge will attract each other, and it is the use of such an attractive force that allows the battery to do work.
Note: Electric current is not the same as electron flow as is widely mistaken. Firstly, the total current has the opposite direction compared to electron flow. This is a lucky "mistake" on our forefathers' part to put it this way. It is also because of this lucky legacy that we are reminded that electricity can flow in materials other than metals alone. For example, in water, it is not electrons that flow, it is ions, and the +ve ions and -ve ions flow in opposite directions, contributing half of the total current each.
Balance of Charge
[edit | edit source]Atoms, the smallest particles of matter that retain the properties of the matter, are made of protons, electrons, and neutrons. Protons have a positive charge, Electrons have a negative charge that cancels the proton's positive charge. Neutrons are particles that are similar to a proton but have a neutral charge. There are no differences between positive and negative charges except that particles with the same charge repel each other and particles with opposite charges attract each other. If a solitary positive proton and negative electron are placed near each other they will come together to form a hydrogen atom. This repulsion and attraction (force between stationary charged particles) is known as the Electrostatic Force and extends theoretically to infinity, but is diluted as the distance between particles increases.
When an atom has one or more missing electrons it is left with a positive charge, and when an atom has at least one extra electron it has a negative charge. Having a positive or a negative charge makes an atom an ion. Atoms only gain and lose protons and neutrons through fusion, fission, and radioactive decay. Although atoms are made of many particles and objects are made of many atoms, they behave similarly to charged particles in terms of how they repel and attract.
In an atom the protons and neutrons combine to form a tightly bound nucleus. This nucleus is surrounded by a vast cloud of electrons circling it at a distance but held near the protons by electromagnetic attraction (the electrostatic force discussed earlier). The cloud exists as a series of overlapping shells / bands in which the inner valence bands are filled with electrons and are tightly bound to the atom. The outer conduction bands contain no electrons except those that have accelerated to the conduction bands by gaining energy. With enough energy an electron will escape an atom (compare with the escape velocity of a space rocket). When an electron in the conduction band decelerates and falls to another conduction band or the valence band a photon is emitted. This is known as the photoelectric effect.
A laser is formed when electrons travel back and forth between conduction bands emitting synchronized photons.
- When the conduction and valence bands overlap, the atom is a conductor and allows for the free movement of electrons. Conductors are metals and can be thought of as a bunch of atomic nuclei surrounded by a churning "sea of electrons".
- When there is a large energy level gap between the conduction and valence bands, the atom is an insulator; it traps electrons. Many insulators are non-metals and are good at blocking the flow of electrons.
- When there is a small energy level gap between the conduction and valence bands, the atom is a semiconductor. Semiconductors behave like conductors and insulators, and work using the conduction and valence bands. The electrons in the outer valence band are known as holes. They behave like positive charges because of how they flow. In semiconductors electrons collide with the material and their progress is halted. This makes the electrons have an effective mass that is less than their normal mass. In some semiconductors holes have a larger effective mass than the conduction electrons.
Electronic devices are based on the idea of exploiting the differences between conductors, insulators, and semiconductors but also exploit known physical phenomena such as electromagnetism and phosphorescence.
Conductors
[edit | edit source]In a metal the electrons of an object are free to move from atom to atom. Due to their mutual repulsion (calculable via Coulomb's Law ), the valence electrons are forced from the centre of the object and spread out evenly across its surface in order to be as far apart as possible. This cavity of empty space is known as a Faraday Cage and stops electromagnetic radiation, such as charge, radio waves, and EMPs (Electro-Magnetic Pulses) from entering and leaving the object. If there are holes in the Faraday Cage then radiation can pass.
One of the interesting things to do with conductors is demonstrate the transfer of charge between metal spheres. Start by taking two identical and uncharged metal spheres which are each suspended by insulators (such as a pieces of string). The first step involves putting sphere 1 next to but not touching sphere 2. This causes all the electrons in sphere 2 to travel away from sphere 1 to the far end of sphere 2. So sphere 2 now has a negative end filled with electrons and a positive end lacking electrons. Next sphere 2 is grounded by contact with a conductor connected with the earth and the earth takes its electrons leaving sphere 2 with a positive charge. The positive charge (absence of electrons) spreads evenly across the surface due to its lack of electrons. If suspended by strings, the relatively negatively charged sphere 1 will attract the relatively positively charged sphere 2.
Insulators
[edit | edit source]In an insulator the charges of a material are stuck and cannot flow. This allows an imbalance of charge to build up on the surface of the object by way of the triboelectric effect. The triboelectric effect (rubbing electricity effect) involves the exchange of electrons when two different insulators such as glass, hard rubber, amber, or even the seat of one's trousers, come into contact. The polarity and strength of the charges produced differ according to the material composition and its surface smoothness. For example, glass rubbed with silk will build up a charge, as will hard rubber rubbed with fur. The effect is greatly enhanced by rubbing materials together.
- Van de Graaff Generator: A charge pump (pump for electrons) that generates static electricity. In a Van de Graaff generator, a conveyor belt uses rubbing to pick up electrons, which are then deposited on metal brushes. The end result is a charge difference.
Because the material being rubbed is now charged, contact with an uncharged object or an object with the opposite charge may cause a discharge of the built-up static electricity by way of a spark. A person simply walking across a carpet may build up enough charge to cause a spark to travel over a centimetre. The spark is powerful enough to attract dust particles to cloth, destroy electrical equipment, ignite gas fumes, and create lightning. In extreme cases the spark can destroy factories that deal with gunpowder and explosives. The best way to remove static electricity is by discharging it through grounding. Humid air will also slowly discharge static electricity. This is one reason cells and capacitors lose charge over time.
Note: The concept of an insulator changes depending on the applied voltage. Air looks like an insulator when a low voltage is applied. But it breaks down as an insulator, becomes ionised, at about ten kilovolts per centimetre. A person could put their shoe across the terminals of a car battery and it would look like an insulator. But putting a shoe across a ten kilovolt powerline will cause a short.
Quantity of Charge
[edit | edit source]Protons and electrons have opposite but equal charge. Because in almost all cases, the charge on protons or electrons is the smallest amount of charge commonly discussed, the quantity of charge of one proton is considered one positive elementary charge and the charge of one electron is one negative elementary charge. Because atoms and such particles are so small, and charge in amounts of multi-trillions of elementary charges are usually discussed, a much larger unit of charge is typically used. The coulomb is a unit of charge, which can be expressed as a positive or negative number, which is equal to approximately 6.2415×1018 elementary charges. Accordingly, an elementary charge is equal to approximately 1.602×10-19 coulombs. The commonly used abbreviation for the coulomb is a capital C. The SI definition of a coulomb is the quantity of charge which passes a point over a period of 1 second ( s ) when a current of 1 ampere (A) flows past that point, i.e., C = A·s or A = C/s. You may find it helpful during later lessons to retain this picture in your mind (even though you may not recall the exact number). An ampere is one of the fundamental units in physics from which various other units are defined, such as the coulomb.
Force between Charges: Coulomb's Law
[edit | edit source]The repulsive or attractive electrostatic force between charges decreases as the charges are located further from each other by the square of the distance between them. An equation called Coulomb's law determines the electrostatic force between two charged objects. The following picture shows a charge q at a certain point with another charge Q at a distance of r away from it. The presence of Q causes an electrostatic force to be exerted on q.
The magnitude of the electrostatic force F, on a charge q, due to another charge Q, equals Coulomb's constant multiplied by the product of the two charges (in coulombs) divided by the square of the distance r, between the charges q and Q. Here a capital Q and small q are scalar quantities used for symbolizing the two charges, but other symbols such as q1 and q2 have been used in other sources. These symbols for charge were used for consistency with the electric field article in Wikipedia and are consistent with the Reference below.
F = magnitude of electrostatic force on charge q due to another charge Q
r = distance (magnitude quantity in above equation) between q and Q
k = Coulomb's constant = 8.9875×109 N·m2/C2 in free space
The value of Coulomb's constant given here is such that the preceding Coulomb's Law equation will work if both q and Q are given in units of coulombs, r in metres, and F in newtons and there is no dielectric material between the charges. A dielectric material is one that reduces the electrostatic force when placed between charges. Furthermore, Coulomb's constant can be given by:
where = permittivity. When there is no dielectric material between the charges (for example, in free space or a vacuum),
Air is only very weakly dielectric and the value above for will work well enough with air between the charges. If a dielectric material is present, then
where is the dielectric constant which depends on the dielectric material. In a vacuum (free space), and thus . For air, . Typically, solid insulating materials have values of and will reduce electric force between charges. The dielectric constant can also be called relative permittivity, symbolized as in Wikipedia.
Highly charged particles close to each other exert heavy forces on each other; if the charges are less or they are farther apart, the force is less. As the charges move far enough apart, their effect on each other becomes negligible.
Any force on an object is a vector quantity. Vector quantities such as forces are characterized by a numerical magnitude (i. e. basically the size of the force) and a direction. A vector is often pictured by an arrow pointing in the direction. In a force vector, the direction is the one in which the force pulls the object. The symbol is used here for the electric force vector. If charges q and Q are either both positive or both negative, then they will repel each other. This means the direction of the electric force on q due to Q is away from Q in exactly the opposite direction, as shown by the red arrow in the preceding diagram. If one of the charges is positive and the other negative, then they will attract each other. This means that the direction of on q due to Q is exactly in the direction towards Q, as shown by the blue arrow in the preceding diagram. The Coulomb's equation shown above will give a magnitude for a repulsive force away from the Q charge. A property of a vector is that if its magnitude is negative, the vector will be equal to a vector with an equivalent but positive magnitude and exactly the opposite direction. So, if the magnitude given by the above equation is negative due to opposite charges, the direction of the resulting force will be directly opposite of away from Q, meaning the force will be towards Q, an attractive force. In other sources, different variations of Coulombs' Law are given, including vector formulas in some cases (see Wikipedia link and reference(s) below).
In many situations, there may be many charges, Q1, Q2, Q3, through Qn, on the charge q in question. Each of the Q1 through Qn charges will exert an electric force on q. The direction of the force depends on the location of the surrounding charges. A Coulomb's Law calculation between q and a corresponding Qi charge would give the magnitude of the electric force exerted by each of the Qi charges for i = 1 through n, but the direction of each of the component forces must also be used to determine the individual force vectors, . To determine the total electric force on q, the electric force contributions from each of these charges add up as vector quantities, not just like ordinary (or scalar) numbers.
The total electric force on q is additive to any other forces affecting it, but all of the forces are to be added together as vectors to obtain the total force on the charged object q. In many cases, there are billions of electrons or other charges present, so that geometrical distributions of charges are used with equations stemming from Coulomb's Law. Practically speaking, such calculations are usually of more interest to a physicist than an electrician, electrical engineer, or electronics hobbyist, so they will not be discussed much more in this book, except in the section on capacitors.
In addition to the electrostatic forces described here, electromagnetic forces are created when the charges are moving. These will be described later.
Reference(s):
- College Physics Volume 2 by Doug Davis, Saunders College Publishing, Orlando, FL, 1994
Next: Voltage, Current, and Power
Return to: Electronics Outline